| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 2moswap | GIF version | ||
| Description: A condition allowing swap of "at most one" and existential quantifiers. (Contributed by NM, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| 2moswap | ⊢ (∀x∃*yφ → (∃*x∃yφ → ∃*y∃xφ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 1732 | . . . 4 ⊢ Ⅎy∃yφ | |
| 2 | 1 | moexex 2273 | . . 3 ⊢ ((∃*x∃yφ ∧ ∀x∃*yφ) → ∃*y∃x(∃yφ ∧ φ)) |
| 3 | 2 | expcom 424 | . 2 ⊢ (∀x∃*yφ → (∃*x∃yφ → ∃*y∃x(∃yφ ∧ φ))) |
| 4 | 19.8a 1756 | . . . . 5 ⊢ (φ → ∃yφ) | |
| 5 | 4 | pm4.71ri 614 | . . . 4 ⊢ (φ ↔ (∃yφ ∧ φ)) |
| 6 | 5 | exbii 1582 | . . 3 ⊢ (∃xφ ↔ ∃x(∃yφ ∧ φ)) |
| 7 | 6 | mobii 2240 | . 2 ⊢ (∃*y∃xφ ↔ ∃*y∃x(∃yφ ∧ φ)) |
| 8 | 3, 7 | syl6ibr 218 | 1 ⊢ (∀x∃*yφ → (∃*x∃yφ → ∃*y∃xφ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 ∃*wmo 2205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
| This theorem is referenced by: 2euswap 2280 2eu1 2284 |
| Copyright terms: Public domain | W3C validator |