New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > euex | GIF version |
Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
euex | ⊢ (∃!xφ → ∃xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . 3 ⊢ Ⅎyφ | |
2 | 1 | eu1 2225 | . 2 ⊢ (∃!xφ ↔ ∃x(φ ∧ ∀y([y / x]φ → x = y))) |
3 | exsimpl 1592 | . 2 ⊢ (∃x(φ ∧ ∀y([y / x]φ → x = y)) → ∃xφ) | |
4 | 2, 3 | sylbi 187 | 1 ⊢ (∃!xφ → ∃xφ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 [wsb 1648 ∃!weu 2204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 |
This theorem is referenced by: eu2 2229 exmoeu 2246 eupickbi 2270 2eu2ex 2278 2exeu 2281 euxfr 3023 fvprc 5326 tz6.12c 5348 ndmfv 5350 dff3 5421 fnoprabg 5586 |
Copyright terms: Public domain | W3C validator |