| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3an6 | GIF version | ||
| Description: Analog of an4 797 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3an6 | ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ) ∧ (τ ∧ η)) ↔ ((φ ∧ χ ∧ τ) ∧ (ψ ∧ θ ∧ η))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an6 1261 | . 2 ⊢ (((φ ∧ χ ∧ τ) ∧ (ψ ∧ θ ∧ η)) ↔ ((φ ∧ ψ) ∧ (χ ∧ θ) ∧ (τ ∧ η))) | |
| 2 | 1 | bicomi 193 | 1 ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ) ∧ (τ ∧ η)) ↔ ((φ ∧ χ ∧ τ) ∧ (ψ ∧ θ ∧ η))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: sfin112 4530 sfinltfin 4536 |
| Copyright terms: Public domain | W3C validator |