NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3an6 GIF version

Theorem 3an6 1262
Description: Analog of an4 797 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Ref Expression
3an6 (((φ ψ) (χ θ) (τ η)) ↔ ((φ χ τ) (ψ θ η)))

Proof of Theorem 3an6
StepHypRef Expression
1 an6 1261 . 2 (((φ χ τ) (ψ θ η)) ↔ ((φ ψ) (χ θ) (τ η)))
21bicomi 193 1 (((φ ψ) (χ θ) (τ η)) ↔ ((φ χ τ) (ψ θ η)))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  sfin112  4529  sfinltfin  4535
  Copyright terms: Public domain W3C validator