NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  an6 GIF version

Theorem an6 1261
Description: Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995.)
Assertion
Ref Expression
an6 (((φ ψ χ) (θ τ η)) ↔ ((φ θ) (ψ τ) (χ η)))

Proof of Theorem an6
StepHypRef Expression
1 an4 797 . . 3 ((((φ ψ) χ) ((θ τ) η)) ↔ (((φ ψ) (θ τ)) (χ η)))
2 an4 797 . . . 4 (((φ ψ) (θ τ)) ↔ ((φ θ) (ψ τ)))
32anbi1i 676 . . 3 ((((φ ψ) (θ τ)) (χ η)) ↔ (((φ θ) (ψ τ)) (χ η)))
41, 3bitri 240 . 2 ((((φ ψ) χ) ((θ τ) η)) ↔ (((φ θ) (ψ τ)) (χ η)))
5 df-3an 936 . . 3 ((φ ψ χ) ↔ ((φ ψ) χ))
6 df-3an 936 . . 3 ((θ τ η) ↔ ((θ τ) η))
75, 6anbi12i 678 . 2 (((φ ψ χ) (θ τ η)) ↔ (((φ ψ) χ) ((θ τ) η)))
8 df-3an 936 . 2 (((φ θ) (ψ τ) (χ η)) ↔ (((φ θ) (ψ τ)) (χ η)))
94, 7, 83bitr4i 268 1 (((φ ψ χ) (θ τ η)) ↔ ((φ θ) (ψ τ) (χ η)))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  3an6  1262  fntxp  5805
  Copyright terms: Public domain W3C validator