NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  an4 GIF version

Theorem an4 797
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.)
Assertion
Ref Expression
an4 (((φ ψ) (χ θ)) ↔ ((φ χ) (ψ θ)))

Proof of Theorem an4
StepHypRef Expression
1 an12 772 . . 3 ((ψ (χ θ)) ↔ (χ (ψ θ)))
21anbi2i 675 . 2 ((φ (ψ (χ θ))) ↔ (φ (χ (ψ θ))))
3 anass 630 . 2 (((φ ψ) (χ θ)) ↔ (φ (ψ (χ θ))))
4 anass 630 . 2 (((φ χ) (ψ θ)) ↔ (φ (χ (ψ θ))))
52, 3, 43bitr4i 268 1 (((φ ψ) (χ θ)) ↔ ((φ χ) (ψ θ)))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  an42  798  an4s  799  anandi  801  anandir  802  rnlem  931  an6  1261  2eu1  2284  2eu4  2287  reean  2778  reu2  3025  rmo4  3030  rmo3  3134  inxpk  4278  dfpw12  4302  ltfintr  4460  opelxp  4812  inxp  4864  xp11  5057  fununi  5161  2elresin  5195  fun  5237  resoprab2  5583  brtxp  5784  qrpprod  5837  fundmen  6044
  Copyright terms: Public domain W3C validator