New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > an4 | GIF version |
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
an4 | ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) ↔ ((φ ∧ χ) ∧ (ψ ∧ θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an12 772 | . . 3 ⊢ ((ψ ∧ (χ ∧ θ)) ↔ (χ ∧ (ψ ∧ θ))) | |
2 | 1 | anbi2i 675 | . 2 ⊢ ((φ ∧ (ψ ∧ (χ ∧ θ))) ↔ (φ ∧ (χ ∧ (ψ ∧ θ)))) |
3 | anass 630 | . 2 ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) ↔ (φ ∧ (ψ ∧ (χ ∧ θ)))) | |
4 | anass 630 | . 2 ⊢ (((φ ∧ χ) ∧ (ψ ∧ θ)) ↔ (φ ∧ (χ ∧ (ψ ∧ θ)))) | |
5 | 2, 3, 4 | 3bitr4i 268 | 1 ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) ↔ ((φ ∧ χ) ∧ (ψ ∧ θ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: an42 798 an4s 799 anandi 801 anandir 802 rnlem 931 an6 1261 2eu1 2284 2eu4 2287 reean 2778 reu2 3025 rmo4 3030 rmo3 3134 inxpk 4278 dfpw12 4302 ltfintr 4460 opelxp 4812 inxp 4864 xp11 5057 fununi 5161 2elresin 5195 fun 5237 resoprab2 5583 brtxp 5784 qrpprod 5837 fundmen 6044 |
Copyright terms: Public domain | W3C validator |