New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3anass | GIF version |
Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3anass | ⊢ ((φ ∧ ψ ∧ χ) ↔ (φ ∧ (ψ ∧ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 936 | . 2 ⊢ ((φ ∧ ψ ∧ χ) ↔ ((φ ∧ ψ) ∧ χ)) | |
2 | anass 630 | . 2 ⊢ (((φ ∧ ψ) ∧ χ) ↔ (φ ∧ (ψ ∧ χ))) | |
3 | 1, 2 | bitri 240 | 1 ⊢ ((φ ∧ ψ ∧ χ) ↔ (φ ∧ (ψ ∧ χ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: 3anrot 939 3anan12 947 3exdistr 1910 r3al 2672 ceqsex2 2896 ceqsex3v 2898 ceqsex4v 2899 ceqsex6v 2900 ceqsex8v 2901 2reu5lem1 3042 2reu5lem2 3043 2reu5lem3 3044 otkelins2kg 4254 otkelins3kg 4255 opkelcokg 4262 setconslem1 4732 dff1o2 5292 dff1o4 5295 dmsi 5520 ndmovass 5619 ndmovdistr 5620 brsnsi1 5776 brsnsi2 5777 brtxp 5784 restxp 5787 oqelins4 5795 dmtxp 5803 brpprod 5840 dmpprod 5841 xpassenlem 6057 xpassen 6058 ceex 6175 ce0nnul 6178 spacind 6288 |
Copyright terms: Public domain | W3C validator |