| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3anor | GIF version | ||
| Description: Triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3anor | ⊢ ((φ ∧ ψ ∧ χ) ↔ ¬ (¬ φ ∨ ¬ ψ ∨ ¬ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 936 | . 2 ⊢ ((φ ∧ ψ ∧ χ) ↔ ((φ ∧ ψ) ∧ χ)) | |
| 2 | anor 475 | . . . 4 ⊢ (((φ ∧ ψ) ∧ χ) ↔ ¬ (¬ (φ ∧ ψ) ∨ ¬ χ)) | |
| 3 | ianor 474 | . . . . 5 ⊢ (¬ (φ ∧ ψ) ↔ (¬ φ ∨ ¬ ψ)) | |
| 4 | 3 | orbi1i 506 | . . . 4 ⊢ ((¬ (φ ∧ ψ) ∨ ¬ χ) ↔ ((¬ φ ∨ ¬ ψ) ∨ ¬ χ)) |
| 5 | 2, 4 | xchbinx 301 | . . 3 ⊢ (((φ ∧ ψ) ∧ χ) ↔ ¬ ((¬ φ ∨ ¬ ψ) ∨ ¬ χ)) |
| 6 | df-3or 935 | . . 3 ⊢ ((¬ φ ∨ ¬ ψ ∨ ¬ χ) ↔ ((¬ φ ∨ ¬ ψ) ∨ ¬ χ)) | |
| 7 | 5, 6 | xchbinxr 302 | . 2 ⊢ (((φ ∧ ψ) ∧ χ) ↔ ¬ (¬ φ ∨ ¬ ψ ∨ ¬ χ)) |
| 8 | 1, 7 | bitri 240 | 1 ⊢ ((φ ∧ ψ ∧ χ) ↔ ¬ (¬ φ ∨ ¬ ψ ∨ ¬ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 ∨ w3o 933 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 |
| This theorem is referenced by: 3ianor 949 ne3anior 2603 |
| Copyright terms: Public domain | W3C validator |