New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3anandirs | GIF version |
Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 25-Jul-2006.) |
Ref | Expression |
---|---|
3anandirs.1 | ⊢ (((φ ∧ θ) ∧ (ψ ∧ θ) ∧ (χ ∧ θ)) → τ) |
Ref | Expression |
---|---|
3anandirs | ⊢ (((φ ∧ ψ ∧ χ) ∧ θ) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 958 | . 2 ⊢ (((φ ∧ ψ ∧ χ) ∧ θ) → φ) | |
2 | simpr 447 | . 2 ⊢ (((φ ∧ ψ ∧ χ) ∧ θ) → θ) | |
3 | simpl2 959 | . 2 ⊢ (((φ ∧ ψ ∧ χ) ∧ θ) → ψ) | |
4 | simpl3 960 | . 2 ⊢ (((φ ∧ ψ ∧ χ) ∧ θ) → χ) | |
5 | 3anandirs.1 | . 2 ⊢ (((φ ∧ θ) ∧ (ψ ∧ θ) ∧ (χ ∧ θ)) → τ) | |
6 | 1, 2, 3, 2, 4, 2, 5 | syl222anc 1198 | 1 ⊢ (((φ ∧ ψ ∧ χ) ∧ θ) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |