New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simpl1 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl1 | ⊢ (((φ ∧ ψ ∧ χ) ∧ θ) → φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 955 | . 2 ⊢ ((φ ∧ ψ ∧ χ) → φ) | |
2 | 1 | adantr 451 | 1 ⊢ (((φ ∧ ψ ∧ χ) ∧ θ) → φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: simpll1 994 simprl1 1000 simp1l1 1048 simp2l1 1054 simp3l1 1060 3anandirs 1284 rspc3ev 2966 nnsucelr 4429 tfinltfin 4502 sfindbl 4531 enadjlem1 6060 enadj 6061 enprmaplem5 6081 lemuc2 6255 lecadd2 6267 |
Copyright terms: Public domain | W3C validator |