NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  biimp3ar GIF version

Theorem biimp3ar 1282
Description: Infer implication from a logical equivalence. Similar to biimpar 471. (Contributed by NM, 2-Jan-2009.)
Hypothesis
Ref Expression
biimp3a.1 ((φ ψ) → (χθ))
Assertion
Ref Expression
biimp3ar ((φ ψ θ) → χ)

Proof of Theorem biimp3ar
StepHypRef Expression
1 biimp3a.1 . . 3 ((φ ψ) → (χθ))
21exbiri 605 . 2 (φ → (ψ → (θχ)))
323imp 1145 1 ((φ ψ θ) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  rmoi  3136  ovmpt2x  5713  ceclr  6188
  Copyright terms: Public domain W3C validator