| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > biimp3ar | GIF version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpar 471. (Contributed by NM, 2-Jan-2009.) |
| Ref | Expression |
|---|---|
| biimp3a.1 | ⊢ ((φ ∧ ψ) → (χ ↔ θ)) |
| Ref | Expression |
|---|---|
| biimp3ar | ⊢ ((φ ∧ ψ ∧ θ) → χ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 | . . 3 ⊢ ((φ ∧ ψ) → (χ ↔ θ)) | |
| 2 | 1 | exbiri 605 | . 2 ⊢ (φ → (ψ → (θ → χ))) |
| 3 | 2 | 3imp 1145 | 1 ⊢ ((φ ∧ ψ ∧ θ) → χ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: rmoi 3136 ovmpt2x 5713 ceclr 6188 |
| Copyright terms: Public domain | W3C validator |