Step | Hyp | Ref
| Expression |
1 | | eqeq1 2359 |
. . . . . 6
⊢ (x = M →
(x = (n
+c n) ↔ M = (n
+c n))) |
2 | 1 | rexbidv 2635 |
. . . . 5
⊢ (x = M →
(∃n
∈ Nn x = (n
+c n) ↔ ∃n ∈ Nn M = (n
+c n))) |
3 | | neeq1 2524 |
. . . . 5
⊢ (x = M →
(x ≠ ∅ ↔ M
≠ ∅)) |
4 | 2, 3 | anbi12d 691 |
. . . 4
⊢ (x = M →
((∃n
∈ Nn x = (n
+c n) ∧ x ≠ ∅) ↔ (∃n ∈ Nn M = (n
+c n) ∧ M ≠ ∅))) |
5 | | df-evenfin 4444 |
. . . 4
⊢ Evenfin = {x ∣ (∃n ∈ Nn x = (n
+c n) ∧ x ≠ ∅)} |
6 | 4, 5 | elab2g 2987 |
. . 3
⊢ (M ∈ Evenfin → (M ∈ Evenfin ↔ (∃n ∈ Nn M = (n
+c n) ∧ M ≠ ∅))) |
7 | 6 | ibi 232 |
. 2
⊢ (M ∈ Evenfin → (∃n ∈ Nn M = (n
+c n) ∧ M ≠ ∅)) |
8 | | addceq2 4384 |
. . . . . . . . . . . 12
⊢ (n = ∅ →
(n +c n) = (n
+c ∅)) |
9 | | addcnul1 4452 |
. . . . . . . . . . . 12
⊢ (n +c ∅) = ∅ |
10 | 8, 9 | syl6eq 2401 |
. . . . . . . . . . 11
⊢ (n = ∅ →
(n +c n) = ∅) |
11 | 10 | necon3i 2555 |
. . . . . . . . . 10
⊢ ((n +c n) ≠ ∅ →
n ≠ ∅) |
12 | | tfinprop 4489 |
. . . . . . . . . . 11
⊢ ((n ∈ Nn ∧ n ≠ ∅) →
( Tfin n ∈ Nn ∧ ∃x ∈ n ℘1x ∈ Tfin n)) |
13 | 12 | simpld 445 |
. . . . . . . . . 10
⊢ ((n ∈ Nn ∧ n ≠ ∅) →
Tfin n ∈ Nn ) |
14 | 11, 13 | sylan2 460 |
. . . . . . . . 9
⊢ ((n ∈ Nn ∧ (n +c n) ≠ ∅) →
Tfin n ∈ Nn ) |
15 | | tfindi 4496 |
. . . . . . . . . 10
⊢ ((n ∈ Nn ∧ n ∈ Nn ∧ (n +c n) ≠ ∅) →
Tfin (n +c n) = ( Tfin
n +c Tfin n)) |
16 | 15 | 3anidm12 1239 |
. . . . . . . . 9
⊢ ((n ∈ Nn ∧ (n +c n) ≠ ∅) →
Tfin (n +c n) = ( Tfin
n +c Tfin n)) |
17 | | addceq12 4385 |
. . . . . . . . . . . 12
⊢ ((m = Tfin
n ∧
m = Tfin n)
→ (m +c m) = ( Tfin
n +c Tfin n)) |
18 | 17 | anidms 626 |
. . . . . . . . . . 11
⊢ (m = Tfin
n → (m +c m) = ( Tfin
n +c Tfin n)) |
19 | 18 | eqeq2d 2364 |
. . . . . . . . . 10
⊢ (m = Tfin
n → ( Tfin (n
+c n) = (m +c m) ↔ Tfin (n
+c n) = ( Tfin n
+c Tfin n))) |
20 | 19 | rspcev 2955 |
. . . . . . . . 9
⊢ (( Tfin n
∈ Nn ∧ Tfin
(n +c n) = ( Tfin
n +c Tfin n))
→ ∃m ∈ Nn Tfin
(n +c n) = (m
+c m)) |
21 | 14, 16, 20 | syl2anc 642 |
. . . . . . . 8
⊢ ((n ∈ Nn ∧ (n +c n) ≠ ∅) →
∃m ∈ Nn Tfin (n
+c n) = (m +c m)) |
22 | | nncaddccl 4419 |
. . . . . . . . . 10
⊢ ((n ∈ Nn ∧ n ∈ Nn ) → (n
+c n) ∈ Nn
) |
23 | 22 | anidms 626 |
. . . . . . . . 9
⊢ (n ∈ Nn → (n
+c n) ∈ Nn
) |
24 | | tfinnnul 4490 |
. . . . . . . . 9
⊢ (((n +c n) ∈ Nn ∧ (n +c n) ≠ ∅) →
Tfin (n +c n) ≠ ∅) |
25 | 23, 24 | sylan 457 |
. . . . . . . 8
⊢ ((n ∈ Nn ∧ (n +c n) ≠ ∅) →
Tfin (n +c n) ≠ ∅) |
26 | 21, 25 | jca 518 |
. . . . . . 7
⊢ ((n ∈ Nn ∧ (n +c n) ≠ ∅) →
(∃m
∈ Nn Tfin (n
+c n) = (m +c m) ∧ Tfin (n
+c n) ≠ ∅)) |
27 | | tfinex 4485 |
. . . . . . . 8
⊢ Tfin (n
+c n) ∈ V |
28 | | eqeq1 2359 |
. . . . . . . . . 10
⊢ (x = Tfin
(n +c n) → (x =
(m +c m) ↔ Tfin (n
+c n) = (m +c m))) |
29 | 28 | rexbidv 2635 |
. . . . . . . . 9
⊢ (x = Tfin
(n +c n) → (∃m ∈ Nn x = (m
+c m) ↔ ∃m ∈ Nn Tfin (n
+c n) = (m +c m))) |
30 | | neeq1 2524 |
. . . . . . . . 9
⊢ (x = Tfin
(n +c n) → (x
≠ ∅ ↔ Tfin (n
+c n) ≠ ∅)) |
31 | 29, 30 | anbi12d 691 |
. . . . . . . 8
⊢ (x = Tfin
(n +c n) → ((∃m ∈ Nn x = (m
+c m) ∧ x ≠ ∅) ↔ (∃m ∈ Nn Tfin (n
+c n) = (m +c m) ∧ Tfin (n
+c n) ≠ ∅))) |
32 | | df-evenfin 4444 |
. . . . . . . 8
⊢ Evenfin = {x ∣ (∃m ∈ Nn x = (m
+c m) ∧ x ≠ ∅)} |
33 | 27, 31, 32 | elab2 2988 |
. . . . . . 7
⊢ ( Tfin (n
+c n) ∈ Evenfin
↔ (∃m ∈ Nn Tfin
(n +c n) = (m
+c m) ∧ Tfin
(n +c n) ≠ ∅)) |
34 | 26, 33 | sylibr 203 |
. . . . . 6
⊢ ((n ∈ Nn ∧ (n +c n) ≠ ∅) →
Tfin (n +c n) ∈ Evenfin ) |
35 | 34 | ex 423 |
. . . . 5
⊢ (n ∈ Nn → ((n
+c n) ≠ ∅ → Tfin (n
+c n) ∈ Evenfin
)) |
36 | | neeq1 2524 |
. . . . . . . 8
⊢ (M = (n
+c n) → (M ≠ ∅ ↔
(n +c n) ≠ ∅)) |
37 | | tfineq 4488 |
. . . . . . . . 9
⊢ (M = (n
+c n) → Tfin M =
Tfin (n +c n)) |
38 | 37 | eleq1d 2419 |
. . . . . . . 8
⊢ (M = (n
+c n) → ( Tfin M
∈ Evenfin ↔ Tfin (n
+c n) ∈ Evenfin
)) |
39 | 36, 38 | imbi12d 311 |
. . . . . . 7
⊢ (M = (n
+c n) → ((M ≠ ∅ →
Tfin M ∈ Evenfin ) ↔ ((n +c n) ≠ ∅ →
Tfin (n +c n) ∈ Evenfin ))) |
40 | 39 | biimprd 214 |
. . . . . 6
⊢ (M = (n
+c n) → (((n +c n) ≠ ∅ →
Tfin (n +c n) ∈ Evenfin ) → (M ≠ ∅ →
Tfin M ∈ Evenfin ))) |
41 | 40 | com12 27 |
. . . . 5
⊢ (((n +c n) ≠ ∅ →
Tfin (n +c n) ∈ Evenfin ) → (M = (n
+c n) → (M ≠ ∅ →
Tfin M ∈ Evenfin ))) |
42 | 35, 41 | syl 15 |
. . . 4
⊢ (n ∈ Nn → (M =
(n +c n) → (M
≠ ∅ → Tfin M
∈ Evenfin ))) |
43 | 42 | rexlimiv 2732 |
. . 3
⊢ (∃n ∈ Nn M = (n
+c n) → (M ≠ ∅ →
Tfin M ∈ Evenfin )) |
44 | 43 | imp 418 |
. 2
⊢ ((∃n ∈ Nn M = (n
+c n) ∧ M ≠ ∅) → Tfin M
∈ Evenfin ) |
45 | 7, 44 | syl 15 |
1
⊢ (M ∈ Evenfin → Tfin M
∈ Evenfin ) |