NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3anrot GIF version

Theorem 3anrot 939
Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
3anrot ((φ ψ χ) ↔ (ψ χ φ))

Proof of Theorem 3anrot
StepHypRef Expression
1 ancom 437 . 2 ((φ (ψ χ)) ↔ ((ψ χ) φ))
2 3anass 938 . 2 ((φ ψ χ) ↔ (φ (ψ χ)))
3 df-3an 936 . 2 ((ψ χ φ) ↔ ((ψ χ) φ))
41, 2, 33bitr4i 268 1 ((φ ψ χ) ↔ (ψ χ φ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  3ancomb  943  3anrev  945  3simpc  954  oqelins4  5795  leaddc2  6216  lemuc2  6255
  Copyright terms: Public domain W3C validator