NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  oqelins4 GIF version

Theorem oqelins4 5795
Description: Ordered quadruple membership in Ins4. (Contributed by SF, 13-Feb-2015.)
Hypothesis
Ref Expression
oqelins4.4 D V
Assertion
Ref Expression
oqelins4 (A, B, C, D Ins4 RA, B, C R)

Proof of Theorem oqelins4
Dummy variables a b p x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2868 . . 3 (A, B, C, D Ins4 RA, B, C, D V)
2 opexb 4604 . . . . 5 (A, B, C, D V ↔ (A V B, C, D V))
3 opexb 4604 . . . . . 6 (B, C, D V ↔ (B V C, D V))
43anbi2i 675 . . . . 5 ((A V B, C, D V) ↔ (A V (B V C, D V)))
52, 4bitri 240 . . . 4 (A, B, C, D V ↔ (A V (B V C, D V)))
6 opexb 4604 . . . . . . 7 (C, D V ↔ (C V D V))
76simplbi 446 . . . . . 6 (C, D V → C V)
87anim2i 552 . . . . 5 ((B V C, D V) → (B V C V))
98anim2i 552 . . . 4 ((A V (B V C, D V)) → (A V (B V C V)))
105, 9sylbi 187 . . 3 (A, B, C, D V → (A V (B V C V)))
111, 10syl 15 . 2 (A, B, C, D Ins4 R → (A V (B V C V)))
12 elex 2868 . . 3 (A, B, C RA, B, C V)
13 opexb 4604 . . . 4 (A, B, C V ↔ (A V B, C V))
14 opexb 4604 . . . . 5 (B, C V ↔ (B V C V))
1514anbi2i 675 . . . 4 ((A V B, C V) ↔ (A V (B V C V)))
1613, 15bitri 240 . . 3 (A, B, C V ↔ (A V (B V C V)))
1712, 16sylib 188 . 2 (A, B, C R → (A V (B V C V)))
18 opeq1 4579 . . . . . . 7 (x = Ax, B, C, D = A, B, C, D)
1918eleq1d 2419 . . . . . 6 (x = A → (x, B, C, D Ins4 RA, B, C, D Ins4 R))
20 opeq1 4579 . . . . . . 7 (x = Ax, B, C = A, B, C)
2120eleq1d 2419 . . . . . 6 (x = A → (x, B, C RA, B, C R))
2219, 21bibi12d 312 . . . . 5 (x = A → ((x, B, C, D Ins4 Rx, B, C R) ↔ (A, B, C, D Ins4 RA, B, C R)))
2322imbi2d 307 . . . 4 (x = A → (((B V C V) → (x, B, C, D Ins4 Rx, B, C R)) ↔ ((B V C V) → (A, B, C, D Ins4 RA, B, C R))))
24 opeq1 4579 . . . . . . . 8 (y = By, z, D = B, z, D)
2524opeq2d 4586 . . . . . . 7 (y = Bx, y, z, D = x, B, z, D)
2625eleq1d 2419 . . . . . 6 (y = B → (x, y, z, D Ins4 Rx, B, z, D Ins4 R))
27 opeq1 4579 . . . . . . . 8 (y = By, z = B, z)
2827opeq2d 4586 . . . . . . 7 (y = Bx, y, z = x, B, z)
2928eleq1d 2419 . . . . . 6 (y = B → (x, y, z Rx, B, z R))
3026, 29bibi12d 312 . . . . 5 (y = B → ((x, y, z, D Ins4 Rx, y, z R) ↔ (x, B, z, D Ins4 Rx, B, z R)))
31 opeq1 4579 . . . . . . . . 9 (z = Cz, D = C, D)
3231opeq2d 4586 . . . . . . . 8 (z = CB, z, D = B, C, D)
3332opeq2d 4586 . . . . . . 7 (z = Cx, B, z, D = x, B, C, D)
3433eleq1d 2419 . . . . . 6 (z = C → (x, B, z, D Ins4 Rx, B, C, D Ins4 R))
35 opeq2 4580 . . . . . . . 8 (z = CB, z = B, C)
3635opeq2d 4586 . . . . . . 7 (z = Cx, B, z = x, B, C)
3736eleq1d 2419 . . . . . 6 (z = C → (x, B, z Rx, B, C R))
3834, 37bibi12d 312 . . . . 5 (z = C → ((x, B, z, D Ins4 Rx, B, z R) ↔ (x, B, C, D Ins4 Rx, B, C R)))
39 df-ins4 5757 . . . . . . 7 Ins4 R = ((1st ⊗ ((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))) “ R)
4039eleq2i 2417 . . . . . 6 (x, y, z, D Ins4 Rx, y, z, D ((1st ⊗ ((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))) “ R))
41 brcnv 4893 . . . . . . . . 9 (p(1st ⊗ ((1st 2nd ) ⊗ ((1st 2nd ) 2nd )))x, y, z, Dx, y, z, D(1st ⊗ ((1st 2nd ) ⊗ ((1st 2nd ) 2nd )))p)
42 brtxp 5784 . . . . . . . . . 10 (x, y, z, D(1st ⊗ ((1st 2nd ) ⊗ ((1st 2nd ) 2nd )))pab(p = a, b x, y, z, D1st a x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b))
43 3ancoma 941 . . . . . . . . . . . . . 14 ((p = a, b x, y, z, D1st a x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b) ↔ (x, y, z, D1st a p = a, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b))
44 3anass 938 . . . . . . . . . . . . . 14 ((x, y, z, D1st a p = a, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b) ↔ (x, y, z, D1st a (p = a, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b)))
45 vex 2863 . . . . . . . . . . . . . . . . 17 x V
46 vex 2863 . . . . . . . . . . . . . . . . . 18 y V
47 vex 2863 . . . . . . . . . . . . . . . . . . 19 z V
48 oqelins4.4 . . . . . . . . . . . . . . . . . . 19 D V
4947, 48opex 4589 . . . . . . . . . . . . . . . . . 18 z, D V
5046, 49opex 4589 . . . . . . . . . . . . . . . . 17 y, z, D V
5145, 50opbr1st 5502 . . . . . . . . . . . . . . . 16 (x, y, z, D1st ax = a)
52 equcom 1680 . . . . . . . . . . . . . . . 16 (x = aa = x)
5351, 52bitri 240 . . . . . . . . . . . . . . 15 (x, y, z, D1st aa = x)
5453anbi1i 676 . . . . . . . . . . . . . 14 ((x, y, z, D1st a (p = a, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b)) ↔ (a = x (p = a, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b)))
5543, 44, 543bitri 262 . . . . . . . . . . . . 13 ((p = a, b x, y, z, D1st a x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b) ↔ (a = x (p = a, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b)))
5655exbii 1582 . . . . . . . . . . . 12 (b(p = a, b x, y, z, D1st a x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b) ↔ b(a = x (p = a, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b)))
57 19.42v 1905 . . . . . . . . . . . 12 (b(a = x (p = a, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b)) ↔ (a = x b(p = a, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b)))
5856, 57bitri 240 . . . . . . . . . . 11 (b(p = a, b x, y, z, D1st a x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b) ↔ (a = x b(p = a, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b)))
5958exbii 1582 . . . . . . . . . 10 (ab(p = a, b x, y, z, D1st a x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b) ↔ a(a = x b(p = a, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b)))
60 opeq1 4579 . . . . . . . . . . . . . 14 (a = xa, b = x, b)
6160eqeq2d 2364 . . . . . . . . . . . . 13 (a = x → (p = a, bp = x, b))
6261anbi1d 685 . . . . . . . . . . . 12 (a = x → ((p = a, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b) ↔ (p = x, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b)))
6362exbidv 1626 . . . . . . . . . . 11 (a = x → (b(p = a, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b) ↔ b(p = x, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b)))
6445, 63ceqsexv 2895 . . . . . . . . . 10 (a(a = x b(p = a, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b)) ↔ b(p = x, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b))
6542, 59, 643bitri 262 . . . . . . . . 9 (x, y, z, D(1st ⊗ ((1st 2nd ) ⊗ ((1st 2nd ) 2nd )))pb(p = x, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b))
66 ancom 437 . . . . . . . . . . . 12 ((p = x, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b) ↔ (x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b p = x, b))
67 brtxp 5784 . . . . . . . . . . . . . 14 (x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))bpa(b = p, a x, y, z, D(1st 2nd )p x, y, z, D((1st 2nd ) 2nd )a))
68 3anrot 939 . . . . . . . . . . . . . . . 16 ((b = p, a x, y, z, D(1st 2nd )p x, y, z, D((1st 2nd ) 2nd )a) ↔ (x, y, z, D(1st 2nd )p x, y, z, D((1st 2nd ) 2nd )a b = p, a))
6945, 50brco2nd 5779 . . . . . . . . . . . . . . . . . 18 (x, y, z, D(1st 2nd )py, z, D1st p)
7046, 49opbr1st 5502 . . . . . . . . . . . . . . . . . 18 (y, z, D1st py = p)
71 equcom 1680 . . . . . . . . . . . . . . . . . 18 (y = pp = y)
7269, 70, 713bitri 262 . . . . . . . . . . . . . . . . 17 (x, y, z, D(1st 2nd )pp = y)
7345, 50brco2nd 5779 . . . . . . . . . . . . . . . . . 18 (x, y, z, D((1st 2nd ) 2nd )ay, z, D(1st 2nd )a)
7446, 49brco2nd 5779 . . . . . . . . . . . . . . . . . . 19 (y, z, D(1st 2nd )az, D1st a)
7547, 48opbr1st 5502 . . . . . . . . . . . . . . . . . . 19 (z, D1st az = a)
7674, 75bitri 240 . . . . . . . . . . . . . . . . . 18 (y, z, D(1st 2nd )az = a)
77 equcom 1680 . . . . . . . . . . . . . . . . . 18 (z = aa = z)
7873, 76, 773bitri 262 . . . . . . . . . . . . . . . . 17 (x, y, z, D((1st 2nd ) 2nd )aa = z)
79 biid 227 . . . . . . . . . . . . . . . . 17 (b = p, ab = p, a)
8072, 78, 793anbi123i 1140 . . . . . . . . . . . . . . . 16 ((x, y, z, D(1st 2nd )p x, y, z, D((1st 2nd ) 2nd )a b = p, a) ↔ (p = y a = z b = p, a))
8168, 80bitri 240 . . . . . . . . . . . . . . 15 ((b = p, a x, y, z, D(1st 2nd )p x, y, z, D((1st 2nd ) 2nd )a) ↔ (p = y a = z b = p, a))
82812exbii 1583 . . . . . . . . . . . . . 14 (pa(b = p, a x, y, z, D(1st 2nd )p x, y, z, D((1st 2nd ) 2nd )a) ↔ pa(p = y a = z b = p, a))
83 opeq1 4579 . . . . . . . . . . . . . . . 16 (p = yp, a = y, a)
8483eqeq2d 2364 . . . . . . . . . . . . . . 15 (p = y → (b = p, ab = y, a))
85 opeq2 4580 . . . . . . . . . . . . . . . 16 (a = zy, a = y, z)
8685eqeq2d 2364 . . . . . . . . . . . . . . 15 (a = z → (b = y, ab = y, z))
8746, 47, 84, 86ceqsex2v 2897 . . . . . . . . . . . . . 14 (pa(p = y a = z b = p, a) ↔ b = y, z)
8867, 82, 873bitri 262 . . . . . . . . . . . . 13 (x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))bb = y, z)
8988anbi1i 676 . . . . . . . . . . . 12 ((x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b p = x, b) ↔ (b = y, z p = x, b))
9066, 89bitri 240 . . . . . . . . . . 11 ((p = x, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b) ↔ (b = y, z p = x, b))
9190exbii 1582 . . . . . . . . . 10 (b(p = x, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b) ↔ b(b = y, z p = x, b))
9246, 47opex 4589 . . . . . . . . . . 11 y, z V
93 opeq2 4580 . . . . . . . . . . . 12 (b = y, zx, b = x, y, z)
9493eqeq2d 2364 . . . . . . . . . . 11 (b = y, z → (p = x, bp = x, y, z))
9592, 94ceqsexv 2895 . . . . . . . . . 10 (b(b = y, z p = x, b) ↔ p = x, y, z)
9691, 95bitri 240 . . . . . . . . 9 (b(p = x, b x, y, z, D((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))b) ↔ p = x, y, z)
9741, 65, 963bitri 262 . . . . . . . 8 (p(1st ⊗ ((1st 2nd ) ⊗ ((1st 2nd ) 2nd )))x, y, z, Dp = x, y, z)
9897rexbii 2640 . . . . . . 7 (p R p(1st ⊗ ((1st 2nd ) ⊗ ((1st 2nd ) 2nd )))x, y, z, Dp R p = x, y, z)
99 elima 4755 . . . . . . 7 (x, y, z, D ((1st ⊗ ((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))) “ R) ↔ p R p(1st ⊗ ((1st 2nd ) ⊗ ((1st 2nd ) 2nd )))x, y, z, D)
100 risset 2662 . . . . . . 7 (x, y, z Rp R p = x, y, z)
10198, 99, 1003bitr4i 268 . . . . . 6 (x, y, z, D ((1st ⊗ ((1st 2nd ) ⊗ ((1st 2nd ) 2nd ))) “ R) ↔ x, y, z R)
10240, 101bitri 240 . . . . 5 (x, y, z, D Ins4 Rx, y, z R)
10330, 38, 102vtocl2g 2919 . . . 4 ((B V C V) → (x, B, C, D Ins4 Rx, B, C R))
10423, 103vtoclg 2915 . . 3 (A V → ((B V C V) → (A, B, C, D Ins4 RA, B, C R)))
105104imp 418 . 2 ((A V (B V C V)) → (A, B, C, D Ins4 RA, B, C R))
10611, 17, 105pm5.21nii 342 1 (A, B, C, D Ins4 RA, B, C R)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   w3a 934  wex 1541   = wceq 1642   wcel 1710  wrex 2616  Vcvv 2860  cop 4562   class class class wbr 4640  1st c1st 4718   ccom 4722  cima 4723  ccnv 4772  2nd c2nd 4784  ctxp 5736   Ins4 cins4 5756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-co 4727  df-ima 4728  df-cnv 4786  df-2nd 4798  df-txp 5737  df-ins4 5757
This theorem is referenced by:  composeex  5821  addcfnex  5825  funsex  5829  crossex  5851  domfnex  5871  ranfnex  5872  transex  5911  antisymex  5913  connexex  5914  foundex  5915  extex  5916  symex  5917  ovmuc  6131  mucex  6134  ovcelem1  6172  ceex  6175
  Copyright terms: Public domain W3C validator