NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3bitrd GIF version

Theorem 3bitrd 270
Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.)
Hypotheses
Ref Expression
3bitrd.1 (φ → (ψχ))
3bitrd.2 (φ → (χθ))
3bitrd.3 (φ → (θτ))
Assertion
Ref Expression
3bitrd (φ → (ψτ))

Proof of Theorem 3bitrd
StepHypRef Expression
1 3bitrd.1 . . 3 (φ → (ψχ))
2 3bitrd.2 . . 3 (φ → (χθ))
31, 2bitrd 244 . 2 (φ → (ψθ))
4 3bitrd.3 . 2 (φ → (θτ))
53, 4bitrd 244 1 (φ → (ψτ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  sbceqal  3098  sbcnel12g  3154  elimhyp3v  3713  elimhyp4v  3714  keephyp3v  3719  opkelopkabg  4246  dfphi2  4570
  Copyright terms: Public domain W3C validator