Proof of Theorem elimhyp3v
| Step | Hyp | Ref
| Expression |
| 1 | | iftrue 3669 |
. . . . . 6
⊢ (φ → if(φ, A,
D) = A) |
| 2 | 1 | eqcomd 2358 |
. . . . 5
⊢ (φ → A = if(φ,
A, D)) |
| 3 | | elimhyp3v.1 |
. . . . 5
⊢ (A = if(φ,
A, D)
→ (φ ↔ χ)) |
| 4 | 2, 3 | syl 15 |
. . . 4
⊢ (φ → (φ ↔ χ)) |
| 5 | | iftrue 3669 |
. . . . . 6
⊢ (φ → if(φ, B,
R) = B) |
| 6 | 5 | eqcomd 2358 |
. . . . 5
⊢ (φ → B = if(φ,
B, R)) |
| 7 | | elimhyp3v.2 |
. . . . 5
⊢ (B = if(φ,
B, R)
→ (χ ↔ θ)) |
| 8 | 6, 7 | syl 15 |
. . . 4
⊢ (φ → (χ ↔ θ)) |
| 9 | | iftrue 3669 |
. . . . . 6
⊢ (φ → if(φ, C,
S) = C) |
| 10 | 9 | eqcomd 2358 |
. . . . 5
⊢ (φ → C = if(φ,
C, S)) |
| 11 | | elimhyp3v.3 |
. . . . 5
⊢ (C = if(φ,
C, S)
→ (θ ↔ τ)) |
| 12 | 10, 11 | syl 15 |
. . . 4
⊢ (φ → (θ ↔ τ)) |
| 13 | 4, 8, 12 | 3bitrd 270 |
. . 3
⊢ (φ → (φ ↔ τ)) |
| 14 | 13 | ibi 232 |
. 2
⊢ (φ → τ) |
| 15 | | elimhyp3v.7 |
. . 3
⊢ η |
| 16 | | iffalse 3670 |
. . . . . 6
⊢ (¬ φ → if(φ, A,
D) = D) |
| 17 | 16 | eqcomd 2358 |
. . . . 5
⊢ (¬ φ → D = if(φ,
A, D)) |
| 18 | | elimhyp3v.4 |
. . . . 5
⊢ (D = if(φ,
A, D)
→ (η ↔ ζ)) |
| 19 | 17, 18 | syl 15 |
. . . 4
⊢ (¬ φ → (η ↔ ζ)) |
| 20 | | iffalse 3670 |
. . . . . 6
⊢ (¬ φ → if(φ, B,
R) = R) |
| 21 | 20 | eqcomd 2358 |
. . . . 5
⊢ (¬ φ → R = if(φ,
B, R)) |
| 22 | | elimhyp3v.5 |
. . . . 5
⊢ (R = if(φ,
B, R)
→ (ζ ↔ σ)) |
| 23 | 21, 22 | syl 15 |
. . . 4
⊢ (¬ φ → (ζ ↔ σ)) |
| 24 | | iffalse 3670 |
. . . . . 6
⊢ (¬ φ → if(φ, C,
S) = S) |
| 25 | 24 | eqcomd 2358 |
. . . . 5
⊢ (¬ φ → S = if(φ,
C, S)) |
| 26 | | elimhyp3v.6 |
. . . . 5
⊢ (S = if(φ,
C, S)
→ (σ ↔ τ)) |
| 27 | 25, 26 | syl 15 |
. . . 4
⊢ (¬ φ → (σ ↔ τ)) |
| 28 | 19, 23, 27 | 3bitrd 270 |
. . 3
⊢ (¬ φ → (η ↔ τ)) |
| 29 | 15, 28 | mpbii 202 |
. 2
⊢ (¬ φ → τ) |
| 30 | 14, 29 | pm2.61i 156 |
1
⊢ τ |