Proof of Theorem opkelopkabg
Step | Hyp | Ref
| Expression |
1 | | opkex 4113 |
. . 3
⊢ ⟪B, C⟫
∈ V |
2 | | eqeq1 2359 |
. . . . . 6
⊢ (x = ⟪B,
C⟫ → (x = ⟪y,
z⟫ ↔ ⟪B, C⟫ =
⟪y, z⟫)) |
3 | | eqcom 2355 |
. . . . . 6
⊢ (⟪B, C⟫ =
⟪y, z⟫ ↔ ⟪y, z⟫ =
⟪B, C⟫) |
4 | 2, 3 | syl6bb 252 |
. . . . 5
⊢ (x = ⟪B,
C⟫ → (x = ⟪y,
z⟫ ↔ ⟪y, z⟫ =
⟪B, C⟫)) |
5 | 4 | anbi1d 685 |
. . . 4
⊢ (x = ⟪B,
C⟫ → ((x = ⟪y,
z⟫ ∧ φ) ↔
(⟪y, z⟫ = ⟪B, C⟫
∧ φ))) |
6 | 5 | 2exbidv 1628 |
. . 3
⊢ (x = ⟪B,
C⟫ → (∃y∃z(x = ⟪y,
z⟫ ∧ φ) ↔
∃y∃z(⟪y,
z⟫ = ⟪B, C⟫
∧ φ))) |
7 | | opkelopkabg.1 |
. . 3
⊢ A = {x ∣ ∃y∃z(x =
⟪y, z⟫ ∧ φ)} |
8 | 1, 6, 7 | elab2 2988 |
. 2
⊢ (⟪B, C⟫
∈ A
↔ ∃y∃z(⟪y,
z⟫ = ⟪B, C⟫
∧ φ)) |
9 | | elex 2867 |
. . 3
⊢ (B ∈ V → B ∈ V) |
10 | | elex 2867 |
. . 3
⊢ (C ∈ W → C ∈ V) |
11 | | vex 2862 |
. . . . . . . . . . 11
⊢ y ∈
V |
12 | | vex 2862 |
. . . . . . . . . . 11
⊢ z ∈
V |
13 | | opkthg 4131 |
. . . . . . . . . . 11
⊢ ((y ∈ V ∧ z ∈ V ∧ C ∈ V) →
(⟪y, z⟫ = ⟪B, C⟫
↔ (y = B ∧ z = C))) |
14 | 11, 12, 13 | mp3an12 1267 |
. . . . . . . . . 10
⊢ (C ∈ V →
(⟪y, z⟫ = ⟪B, C⟫
↔ (y = B ∧ z = C))) |
15 | 14 | adantl 452 |
. . . . . . . . 9
⊢ ((B ∈ V ∧ C ∈ V) → (⟪y, z⟫ =
⟪B, C⟫ ↔ (y = B ∧ z = C))) |
16 | 15 | anbi1d 685 |
. . . . . . . 8
⊢ ((B ∈ V ∧ C ∈ V) → ((⟪y, z⟫ =
⟪B, C⟫ ∧ φ) ↔ ((y = B ∧ z = C) ∧ φ))) |
17 | | anass 630 |
. . . . . . . 8
⊢ (((y = B ∧ z = C) ∧ φ) ↔ (y = B ∧ (z = C ∧ φ))) |
18 | 16, 17 | syl6bb 252 |
. . . . . . 7
⊢ ((B ∈ V ∧ C ∈ V) → ((⟪y, z⟫ =
⟪B, C⟫ ∧ φ) ↔ (y = B ∧ (z = C ∧ φ)))) |
19 | 18 | exbidv 1626 |
. . . . . 6
⊢ ((B ∈ V ∧ C ∈ V) → (∃z(⟪y,
z⟫ = ⟪B, C⟫
∧ φ)
↔ ∃z(y = B ∧ (z = C ∧ φ)))) |
20 | | 19.42v 1905 |
. . . . . 6
⊢ (∃z(y = B ∧ (z = C ∧ φ)) ↔ (y = B ∧ ∃z(z = C ∧ φ))) |
21 | 19, 20 | syl6bb 252 |
. . . . 5
⊢ ((B ∈ V ∧ C ∈ V) → (∃z(⟪y,
z⟫ = ⟪B, C⟫
∧ φ)
↔ (y = B ∧ ∃z(z = C ∧ φ)))) |
22 | 21 | exbidv 1626 |
. . . 4
⊢ ((B ∈ V ∧ C ∈ V) → (∃y∃z(⟪y,
z⟫ = ⟪B, C⟫
∧ φ)
↔ ∃y(y = B ∧ ∃z(z = C ∧ φ)))) |
23 | | opkelopkabg.2 |
. . . . . . . 8
⊢ (y = B →
(φ ↔ ψ)) |
24 | 23 | anbi2d 684 |
. . . . . . 7
⊢ (y = B →
((z = C
∧ φ)
↔ (z = C ∧ ψ))) |
25 | 24 | exbidv 1626 |
. . . . . 6
⊢ (y = B →
(∃z(z = C ∧ φ) ↔ ∃z(z = C ∧ ψ))) |
26 | 25 | ceqsexgv 2971 |
. . . . 5
⊢ (B ∈ V →
(∃y(y = B ∧ ∃z(z = C ∧ φ)) ↔
∃z(z = C ∧ ψ))) |
27 | 26 | adantr 451 |
. . . 4
⊢ ((B ∈ V ∧ C ∈ V) → (∃y(y = B ∧ ∃z(z = C ∧ φ)) ↔ ∃z(z = C ∧ ψ))) |
28 | | opkelopkabg.3 |
. . . . . 6
⊢ (z = C →
(ψ ↔ χ)) |
29 | 28 | ceqsexgv 2971 |
. . . . 5
⊢ (C ∈ V →
(∃z(z = C ∧ ψ) ↔ χ)) |
30 | 29 | adantl 452 |
. . . 4
⊢ ((B ∈ V ∧ C ∈ V) → (∃z(z = C ∧ ψ) ↔
χ)) |
31 | 22, 27, 30 | 3bitrd 270 |
. . 3
⊢ ((B ∈ V ∧ C ∈ V) → (∃y∃z(⟪y,
z⟫ = ⟪B, C⟫
∧ φ)
↔ χ)) |
32 | 9, 10, 31 | syl2an 463 |
. 2
⊢ ((B ∈ V ∧ C ∈ W) → (∃y∃z(⟪y,
z⟫ = ⟪B, C⟫
∧ φ)
↔ χ)) |
33 | 8, 32 | syl5bb 248 |
1
⊢ ((B ∈ V ∧ C ∈ W) → (⟪B, C⟫
∈ A
↔ χ)) |