Proof of Theorem keephyp3v
Step | Hyp | Ref
| Expression |
1 | | keephyp3v.7 |
. . 3
⊢ ρ |
2 | | iftrue 3669 |
. . . . . 6
⊢ (φ → if(φ, A,
D) = A) |
3 | 2 | eqcomd 2358 |
. . . . 5
⊢ (φ → A = if(φ,
A, D)) |
4 | | keephyp3v.1 |
. . . . 5
⊢ (A = if(φ,
A, D)
→ (ρ ↔ χ)) |
5 | 3, 4 | syl 15 |
. . . 4
⊢ (φ → (ρ ↔ χ)) |
6 | | iftrue 3669 |
. . . . . 6
⊢ (φ → if(φ, B,
R) = B) |
7 | 6 | eqcomd 2358 |
. . . . 5
⊢ (φ → B = if(φ,
B, R)) |
8 | | keephyp3v.2 |
. . . . 5
⊢ (B = if(φ,
B, R)
→ (χ ↔ θ)) |
9 | 7, 8 | syl 15 |
. . . 4
⊢ (φ → (χ ↔ θ)) |
10 | | iftrue 3669 |
. . . . . 6
⊢ (φ → if(φ, C,
S) = C) |
11 | 10 | eqcomd 2358 |
. . . . 5
⊢ (φ → C = if(φ,
C, S)) |
12 | | keephyp3v.3 |
. . . . 5
⊢ (C = if(φ,
C, S)
→ (θ ↔ τ)) |
13 | 11, 12 | syl 15 |
. . . 4
⊢ (φ → (θ ↔ τ)) |
14 | 5, 9, 13 | 3bitrd 270 |
. . 3
⊢ (φ → (ρ ↔ τ)) |
15 | 1, 14 | mpbii 202 |
. 2
⊢ (φ → τ) |
16 | | keephyp3v.8 |
. . 3
⊢ η |
17 | | iffalse 3670 |
. . . . . 6
⊢ (¬ φ → if(φ, A,
D) = D) |
18 | 17 | eqcomd 2358 |
. . . . 5
⊢ (¬ φ → D = if(φ,
A, D)) |
19 | | keephyp3v.4 |
. . . . 5
⊢ (D = if(φ,
A, D)
→ (η ↔ ζ)) |
20 | 18, 19 | syl 15 |
. . . 4
⊢ (¬ φ → (η ↔ ζ)) |
21 | | iffalse 3670 |
. . . . . 6
⊢ (¬ φ → if(φ, B,
R) = R) |
22 | 21 | eqcomd 2358 |
. . . . 5
⊢ (¬ φ → R = if(φ,
B, R)) |
23 | | keephyp3v.5 |
. . . . 5
⊢ (R = if(φ,
B, R)
→ (ζ ↔ σ)) |
24 | 22, 23 | syl 15 |
. . . 4
⊢ (¬ φ → (ζ ↔ σ)) |
25 | | iffalse 3670 |
. . . . . 6
⊢ (¬ φ → if(φ, C,
S) = S) |
26 | 25 | eqcomd 2358 |
. . . . 5
⊢ (¬ φ → S = if(φ,
C, S)) |
27 | | keephyp3v.6 |
. . . . 5
⊢ (S = if(φ,
C, S)
→ (σ ↔ τ)) |
28 | 26, 27 | syl 15 |
. . . 4
⊢ (¬ φ → (σ ↔ τ)) |
29 | 20, 24, 28 | 3bitrd 270 |
. . 3
⊢ (¬ φ → (η ↔ τ)) |
30 | 16, 29 | mpbii 202 |
. 2
⊢ (¬ φ → τ) |
31 | 15, 30 | pm2.61i 156 |
1
⊢ τ |