| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3orbi123d | GIF version | ||
| Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 | ⊢ (φ → (ψ ↔ χ)) |
| bi3d.2 | ⊢ (φ → (θ ↔ τ)) |
| bi3d.3 | ⊢ (φ → (η ↔ ζ)) |
| Ref | Expression |
|---|---|
| 3orbi123d | ⊢ (φ → ((ψ ∨ θ ∨ η) ↔ (χ ∨ τ ∨ ζ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 | . . . 4 ⊢ (φ → (ψ ↔ χ)) | |
| 2 | bi3d.2 | . . . 4 ⊢ (φ → (θ ↔ τ)) | |
| 3 | 1, 2 | orbi12d 690 | . . 3 ⊢ (φ → ((ψ ∨ θ) ↔ (χ ∨ τ))) |
| 4 | bi3d.3 | . . 3 ⊢ (φ → (η ↔ ζ)) | |
| 5 | 3, 4 | orbi12d 690 | . 2 ⊢ (φ → (((ψ ∨ θ) ∨ η) ↔ ((χ ∨ τ) ∨ ζ))) |
| 6 | df-3or 935 | . 2 ⊢ ((ψ ∨ θ ∨ η) ↔ ((ψ ∨ θ) ∨ η)) | |
| 7 | df-3or 935 | . 2 ⊢ ((χ ∨ τ ∨ ζ) ↔ ((χ ∨ τ) ∨ ζ)) | |
| 8 | 5, 6, 7 | 3bitr4g 279 | 1 ⊢ (φ → ((ψ ∨ θ ∨ η) ↔ (χ ∨ τ ∨ ζ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 ∨ w3o 933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-3or 935 |
| This theorem is referenced by: moeq3 3014 ltfintri 4467 nncdiv3 6278 |
| Copyright terms: Public domain | W3C validator |