Step | Hyp | Ref
| Expression |
1 | | eqeq2 2362 |
. . . . . . 7
⊢ (y = A →
(x = y
↔ x = A)) |
2 | 1 | anbi2d 684 |
. . . . . 6
⊢ (y = A →
((φ ∧
x = y)
↔ (φ ∧ x = A))) |
3 | | biidd 228 |
. . . . . 6
⊢ (y = A →
((¬ (φ
∨ ψ) ∧ x = B) ↔ (¬ (φ ∨ ψ) ∧
x = B))) |
4 | | biidd 228 |
. . . . . 6
⊢ (y = A →
((ψ ∧
x = C)
↔ (ψ ∧ x = C))) |
5 | 2, 3, 4 | 3orbi123d 1251 |
. . . . 5
⊢ (y = A →
(((φ ∧
x = y)
∨ (¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C)) ↔ ((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C)))) |
6 | 5 | eubidv 2212 |
. . . 4
⊢ (y = A →
(∃!x((φ ∧ x = y) ∨ (¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C)) ↔ ∃!x((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C)))) |
7 | | vex 2862 |
. . . . 5
⊢ y ∈
V |
8 | | moeq3.1 |
. . . . 5
⊢ B ∈
V |
9 | | moeq3.2 |
. . . . 5
⊢ C ∈
V |
10 | | moeq3.3 |
. . . . 5
⊢ ¬ (φ ∧ ψ) |
11 | 7, 8, 9, 10 | eueq3 3011 |
. . . 4
⊢ ∃!x((φ ∧ x = y) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C)) |
12 | 6, 11 | vtoclg 2914 |
. . 3
⊢ (A ∈ V → ∃!x((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))) |
13 | | eumo 2244 |
. . 3
⊢ (∃!x((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))
→ ∃*x((φ ∧ x = A) ∨ (¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C))) |
14 | 12, 13 | syl 15 |
. 2
⊢ (A ∈ V → ∃*x((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))) |
15 | | vex 2862 |
. . . . . . . . 9
⊢ x ∈
V |
16 | | eleq1 2413 |
. . . . . . . . 9
⊢ (x = A →
(x ∈ V
↔ A ∈ V)) |
17 | 15, 16 | mpbii 202 |
. . . . . . . 8
⊢ (x = A →
A ∈
V) |
18 | | pm2.21 100 |
. . . . . . . 8
⊢ (¬ A ∈ V →
(A ∈ V
→ x = y)) |
19 | 17, 18 | syl5 28 |
. . . . . . 7
⊢ (¬ A ∈ V →
(x = A
→ x = y)) |
20 | 19 | anim2d 548 |
. . . . . 6
⊢ (¬ A ∈ V →
((φ ∧
x = A)
→ (φ ∧ x = y))) |
21 | 20 | orim1d 812 |
. . . . 5
⊢ (¬ A ∈ V →
(((φ ∧
x = A)
∨ ((¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C))) → ((φ ∧ x = y) ∨ ((¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))))) |
22 | | 3orass 937 |
. . . . 5
⊢ (((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))
↔ ((φ ∧ x = A) ∨ ((¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C)))) |
23 | | 3orass 937 |
. . . . 5
⊢ (((φ ∧ x = y) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))
↔ ((φ ∧ x = y) ∨ ((¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C)))) |
24 | 21, 22, 23 | 3imtr4g 261 |
. . . 4
⊢ (¬ A ∈ V →
(((φ ∧
x = A)
∨ (¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C)) → ((φ ∧ x = y) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C)))) |
25 | 24 | alrimiv 1631 |
. . 3
⊢ (¬ A ∈ V → ∀x(((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))
→ ((φ ∧ x = y) ∨ (¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C)))) |
26 | | euimmo 2253 |
. . 3
⊢ (∀x(((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))
→ ((φ ∧ x = y) ∨ (¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C))) → (∃!x((φ ∧ x = y) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))
→ ∃*x((φ ∧ x = A) ∨ (¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C)))) |
27 | 25, 11, 26 | ee10 1376 |
. 2
⊢ (¬ A ∈ V → ∃*x((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))) |
28 | 14, 27 | pm2.61i 156 |
1
⊢ ∃*x((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C)) |