| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3anbi123d | GIF version | ||
| Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 | ⊢ (φ → (ψ ↔ χ)) |
| bi3d.2 | ⊢ (φ → (θ ↔ τ)) |
| bi3d.3 | ⊢ (φ → (η ↔ ζ)) |
| Ref | Expression |
|---|---|
| 3anbi123d | ⊢ (φ → ((ψ ∧ θ ∧ η) ↔ (χ ∧ τ ∧ ζ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 | . . . 4 ⊢ (φ → (ψ ↔ χ)) | |
| 2 | bi3d.2 | . . . 4 ⊢ (φ → (θ ↔ τ)) | |
| 3 | 1, 2 | anbi12d 691 | . . 3 ⊢ (φ → ((ψ ∧ θ) ↔ (χ ∧ τ))) |
| 4 | bi3d.3 | . . 3 ⊢ (φ → (η ↔ ζ)) | |
| 5 | 3, 4 | anbi12d 691 | . 2 ⊢ (φ → (((ψ ∧ θ) ∧ η) ↔ ((χ ∧ τ) ∧ ζ))) |
| 6 | df-3an 936 | . 2 ⊢ ((ψ ∧ θ ∧ η) ↔ ((ψ ∧ θ) ∧ η)) | |
| 7 | df-3an 936 | . 2 ⊢ ((χ ∧ τ ∧ ζ) ↔ ((χ ∧ τ) ∧ ζ)) | |
| 8 | 5, 6, 7 | 3bitr4g 279 | 1 ⊢ (φ → ((ψ ∧ θ ∧ η) ↔ (χ ∧ τ ∧ ζ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: 3anbi12d 1253 3anbi13d 1254 3anbi23d 1255 ax11wdemo 1723 sbc3ang 3105 pw1equn 4332 pw1eqadj 4333 cenc 6182 |
| Copyright terms: Public domain | W3C validator |