New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3simpb | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3simpb | ⊢ ((φ ∧ ψ ∧ χ) → (φ ∧ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancomb 943 | . 2 ⊢ ((φ ∧ ψ ∧ χ) ↔ (φ ∧ χ ∧ ψ)) | |
2 | 3simpa 952 | . 2 ⊢ ((φ ∧ χ ∧ ψ) → (φ ∧ χ)) | |
3 | 1, 2 | sylbi 187 | 1 ⊢ ((φ ∧ ψ ∧ χ) → (φ ∧ χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: 3adant2 974 3adantl2 1112 3adantr2 1115 |
Copyright terms: Public domain | W3C validator |