New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3adant2 | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
3adant.1 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
3adant2 | ⊢ ((φ ∧ θ ∧ ψ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 953 | . 2 ⊢ ((φ ∧ θ ∧ ψ) → (φ ∧ ψ)) | |
2 | 3adant.1 | . 2 ⊢ ((φ ∧ ψ) → χ) | |
3 | 1, 2 | syl 15 | 1 ⊢ ((φ ∧ θ ∧ ψ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: 3ad2ant1 976 eupickb 2269 vtoclegft 2927 eqeu 3008 leltfintr 4459 ltfintr 4460 ltfintri 4467 ncfineleq 4478 tfinltfin 4502 vfinspnn 4542 vfintle 4547 phi11lem1 4596 fnco 5192 dff1o2 5292 fnimapr 5375 f1elima 5475 f1ocnvfvb 5480 fununiq 5518 oprssov 5604 ncspw1eu 6160 leaddc1 6215 letc 6232 addcdir 6252 lemuc1 6254 lecadd2 6267 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |