NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  4exmid GIF version

Theorem 4exmid 905
Description: The disjunction of the four possible combinations of two wffs and their negations is always true. (Contributed by David Abernethy, 28-Jan-2014.)
Assertion
Ref Expression
4exmid (((φ ψ) φ ¬ ψ)) ((φ ¬ ψ) (ψ ¬ φ)))

Proof of Theorem 4exmid
StepHypRef Expression
1 exmid 404 . 2 ((φψ) ¬ (φψ))
2 dfbi3 863 . . 3 ((φψ) ↔ ((φ ψ) φ ¬ ψ)))
3 xor 861 . . 3 (¬ (φψ) ↔ ((φ ¬ ψ) (ψ ¬ φ)))
42, 3orbi12i 507 . 2 (((φψ) ¬ (φψ)) ↔ (((φ ψ) φ ¬ ψ)) ((φ ¬ ψ) (ψ ¬ φ))))
51, 4mpbi 199 1 (((φ ψ) φ ¬ ψ)) ((φ ¬ ψ) (ψ ¬ φ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator