New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 4exmid | GIF version |
Description: The disjunction of the four possible combinations of two wffs and their negations is always true. (Contributed by David Abernethy, 28-Jan-2014.) |
Ref | Expression |
---|---|
4exmid | ⊢ (((φ ∧ ψ) ∨ (¬ φ ∧ ¬ ψ)) ∨ ((φ ∧ ¬ ψ) ∨ (ψ ∧ ¬ φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid 404 | . 2 ⊢ ((φ ↔ ψ) ∨ ¬ (φ ↔ ψ)) | |
2 | dfbi3 863 | . . 3 ⊢ ((φ ↔ ψ) ↔ ((φ ∧ ψ) ∨ (¬ φ ∧ ¬ ψ))) | |
3 | xor 861 | . . 3 ⊢ (¬ (φ ↔ ψ) ↔ ((φ ∧ ¬ ψ) ∨ (ψ ∧ ¬ φ))) | |
4 | 2, 3 | orbi12i 507 | . 2 ⊢ (((φ ↔ ψ) ∨ ¬ (φ ↔ ψ)) ↔ (((φ ∧ ψ) ∨ (¬ φ ∧ ¬ ψ)) ∨ ((φ ∧ ¬ ψ) ∨ (ψ ∧ ¬ φ)))) |
5 | 1, 4 | mpbi 199 | 1 ⊢ (((φ ∧ ψ) ∨ (¬ φ ∧ ¬ ψ)) ∨ ((φ ∧ ¬ ψ) ∨ (ψ ∧ ¬ φ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |