NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bimsc1 GIF version

Theorem bimsc1 904
Description: Removal of conjunct from one side of an equivalence. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
bimsc1 (((φψ) (χ ↔ (ψ φ))) → (χφ))

Proof of Theorem bimsc1
StepHypRef Expression
1 simpr 447 . . . 4 ((ψ φ) → φ)
2 ancr 532 . . . 4 ((φψ) → (φ → (ψ φ)))
31, 2impbid2 195 . . 3 ((φψ) → ((ψ φ) ↔ φ))
43bibi2d 309 . 2 ((φψ) → ((χ ↔ (ψ φ)) ↔ (χφ)))
54biimpa 470 1 (((φψ) (χ ↔ (ψ φ))) → (χφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator