| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > bimsc1 | GIF version | ||
| Description: Removal of conjunct from one side of an equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bimsc1 | ⊢ (((φ → ψ) ∧ (χ ↔ (ψ ∧ φ))) → (χ ↔ φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 447 | . . . 4 ⊢ ((ψ ∧ φ) → φ) | |
| 2 | ancr 532 | . . . 4 ⊢ ((φ → ψ) → (φ → (ψ ∧ φ))) | |
| 3 | 1, 2 | impbid2 195 | . . 3 ⊢ ((φ → ψ) → ((ψ ∧ φ) ↔ φ)) |
| 4 | 3 | bibi2d 309 | . 2 ⊢ ((φ → ψ) → ((χ ↔ (ψ ∧ φ)) ↔ (χ ↔ φ))) |
| 5 | 4 | biimpa 470 | 1 ⊢ (((φ → ψ) ∧ (χ ↔ (ψ ∧ φ))) → (χ ↔ φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |