New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > alrot4 | GIF version |
Description: Rotate 4 universal quantifiers twice. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
Ref | Expression |
---|---|
alrot4 | ⊢ (∀x∀y∀z∀wφ ↔ ∀z∀w∀x∀yφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrot3 1738 | . . 3 ⊢ (∀y∀z∀wφ ↔ ∀z∀w∀yφ) | |
2 | 1 | albii 1566 | . 2 ⊢ (∀x∀y∀z∀wφ ↔ ∀x∀z∀w∀yφ) |
3 | alrot3 1738 | . 2 ⊢ (∀x∀z∀w∀yφ ↔ ∀z∀w∀x∀yφ) | |
4 | 2, 3 | bitri 240 | 1 ⊢ (∀x∀y∀z∀wφ ↔ ∀z∀w∀x∀yφ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-7 1734 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 2mo 2282 fun11 5160 |
Copyright terms: Public domain | W3C validator |