Step | Hyp | Ref
| Expression |
1 | | equequ2 1686 |
. . . . . . 7
⊢ (v = z →
(x = v
↔ x = z)) |
2 | | equequ2 1686 |
. . . . . . 7
⊢ (u = w →
(y = u
↔ y = w)) |
3 | 1, 2 | bi2anan9 843 |
. . . . . 6
⊢ ((v = z ∧ u = w) → ((x =
v ∧
y = u)
↔ (x = z ∧ y = w))) |
4 | 3 | imbi2d 307 |
. . . . 5
⊢ ((v = z ∧ u = w) → ((φ → (x = v ∧ y = u)) ↔ (φ → (x = z ∧ y = w)))) |
5 | 4 | 2albidv 1627 |
. . . 4
⊢ ((v = z ∧ u = w) → (∀x∀y(φ → (x = v ∧ y = u)) ↔ ∀x∀y(φ → (x = z ∧ y = w)))) |
6 | 5 | cbvex2v 2007 |
. . 3
⊢ (∃v∃u∀x∀y(φ → (x = v ∧ y = u)) ↔ ∃z∃w∀x∀y(φ → (x = z ∧ y = w))) |
7 | | nfv 1619 |
. . . . . . . . 9
⊢ Ⅎz(φ →
(x = v
∧ y =
u)) |
8 | | nfv 1619 |
. . . . . . . . 9
⊢ Ⅎw(φ →
(x = v
∧ y =
u)) |
9 | | nfs1v 2106 |
. . . . . . . . . 10
⊢ Ⅎx[z / x][w / y]φ |
10 | | nfv 1619 |
. . . . . . . . . 10
⊢ Ⅎx(z = v ∧ w = u) |
11 | 9, 10 | nfim 1813 |
. . . . . . . . 9
⊢ Ⅎx([z / x][w / y]φ →
(z = v
∧ w =
u)) |
12 | | nfs1v 2106 |
. . . . . . . . . . 11
⊢ Ⅎy[w / y]φ |
13 | 12 | nfsb 2109 |
. . . . . . . . . 10
⊢ Ⅎy[z / x][w / y]φ |
14 | | nfv 1619 |
. . . . . . . . . 10
⊢ Ⅎy(z = v ∧ w = u) |
15 | 13, 14 | nfim 1813 |
. . . . . . . . 9
⊢ Ⅎy([z / x][w / y]φ →
(z = v
∧ w =
u)) |
16 | | sbequ12 1919 |
. . . . . . . . . . 11
⊢ (y = w →
(φ ↔ [w / y]φ)) |
17 | | sbequ12 1919 |
. . . . . . . . . . 11
⊢ (x = z →
([w / y]φ ↔
[z / x][w / y]φ)) |
18 | 16, 17 | sylan9bbr 681 |
. . . . . . . . . 10
⊢ ((x = z ∧ y = w) → (φ
↔ [z / x][w / y]φ)) |
19 | | equequ1 1684 |
. . . . . . . . . . 11
⊢ (x = z →
(x = v
↔ z = v)) |
20 | | equequ1 1684 |
. . . . . . . . . . 11
⊢ (y = w →
(y = u
↔ w = u)) |
21 | 19, 20 | bi2anan9 843 |
. . . . . . . . . 10
⊢ ((x = z ∧ y = w) → ((x =
v ∧
y = u)
↔ (z = v ∧ w = u))) |
22 | 18, 21 | imbi12d 311 |
. . . . . . . . 9
⊢ ((x = z ∧ y = w) → ((φ → (x = v ∧ y = u)) ↔ ([z /
x][w /
y]φ
→ (z = v ∧ w = u)))) |
23 | 7, 8, 11, 15, 22 | cbval2 2004 |
. . . . . . . 8
⊢ (∀x∀y(φ → (x = v ∧ y = u)) ↔ ∀z∀w([z / x][w / y]φ → (z = v ∧ w = u))) |
24 | 23 | biimpi 186 |
. . . . . . 7
⊢ (∀x∀y(φ → (x = v ∧ y = u)) → ∀z∀w([z / x][w / y]φ → (z = v ∧ w = u))) |
25 | 24 | ancli 534 |
. . . . . 6
⊢ (∀x∀y(φ → (x = v ∧ y = u)) → (∀x∀y(φ → (x = v ∧ y = u)) ∧ ∀z∀w([z / x][w / y]φ → (z = v ∧ w = u)))) |
26 | | alcom 1737 |
. . . . . . . . 9
⊢ (∀y∀z∀w((φ → (x = v ∧ y = u)) ∧ ([z / x][w / y]φ → (z = v ∧ w = u))) ↔ ∀z∀y∀w((φ → (x = v ∧ y = u)) ∧ ([z / x][w / y]φ → (z = v ∧ w = u)))) |
27 | 8, 15 | aaan 1884 |
. . . . . . . . . 10
⊢ (∀y∀w((φ → (x = v ∧ y = u)) ∧ ([z / x][w / y]φ → (z = v ∧ w = u))) ↔ (∀y(φ → (x = v ∧ y = u)) ∧ ∀w([z / x][w / y]φ → (z = v ∧ w = u)))) |
28 | 27 | albii 1566 |
. . . . . . . . 9
⊢ (∀z∀y∀w((φ → (x = v ∧ y = u)) ∧ ([z / x][w / y]φ → (z = v ∧ w = u))) ↔ ∀z(∀y(φ → (x = v ∧ y = u)) ∧ ∀w([z / x][w / y]φ → (z = v ∧ w = u)))) |
29 | 26, 28 | bitri 240 |
. . . . . . . 8
⊢ (∀y∀z∀w((φ → (x = v ∧ y = u)) ∧ ([z / x][w / y]φ → (z = v ∧ w = u))) ↔ ∀z(∀y(φ → (x = v ∧ y = u)) ∧ ∀w([z / x][w / y]φ → (z = v ∧ w = u)))) |
30 | 29 | albii 1566 |
. . . . . . 7
⊢ (∀x∀y∀z∀w((φ → (x = v ∧ y = u)) ∧ ([z / x][w / y]φ → (z = v ∧ w = u))) ↔ ∀x∀z(∀y(φ → (x = v ∧ y = u)) ∧ ∀w([z / x][w / y]φ → (z = v ∧ w = u)))) |
31 | | nfv 1619 |
. . . . . . . 8
⊢ Ⅎz∀y(φ →
(x = v
∧ y =
u)) |
32 | 11 | nfal 1842 |
. . . . . . . 8
⊢ Ⅎx∀w([z / x][w / y]φ →
(z = v
∧ w =
u)) |
33 | 31, 32 | aaan 1884 |
. . . . . . 7
⊢ (∀x∀z(∀y(φ → (x = v ∧ y = u)) ∧ ∀w([z / x][w / y]φ → (z = v ∧ w = u))) ↔ (∀x∀y(φ → (x = v ∧ y = u)) ∧ ∀z∀w([z / x][w / y]φ → (z = v ∧ w = u)))) |
34 | 30, 33 | bitri 240 |
. . . . . 6
⊢ (∀x∀y∀z∀w((φ → (x = v ∧ y = u)) ∧ ([z / x][w / y]φ → (z = v ∧ w = u))) ↔ (∀x∀y(φ → (x = v ∧ y = u)) ∧ ∀z∀w([z / x][w / y]φ → (z = v ∧ w = u)))) |
35 | 25, 34 | sylibr 203 |
. . . . 5
⊢ (∀x∀y(φ → (x = v ∧ y = u)) → ∀x∀y∀z∀w((φ → (x = v ∧ y = u)) ∧ ([z / x][w / y]φ → (z = v ∧ w = u)))) |
36 | | prth 554 |
. . . . . . . 8
⊢ (((φ → (x = v ∧ y = u)) ∧ ([z / x][w / y]φ → (z = v ∧ w = u))) → ((φ ∧
[z / x][w / y]φ) →
((x = v
∧ y =
u) ∧
(z = v
∧ w =
u)))) |
37 | | equtr2 1688 |
. . . . . . . . . 10
⊢ ((x = v ∧ z = v) → x =
z) |
38 | | equtr2 1688 |
. . . . . . . . . 10
⊢ ((y = u ∧ w = u) → y =
w) |
39 | 37, 38 | anim12i 549 |
. . . . . . . . 9
⊢ (((x = v ∧ z = v) ∧ (y = u ∧ w = u)) → (x =
z ∧
y = w)) |
40 | 39 | an4s 799 |
. . . . . . . 8
⊢ (((x = v ∧ y = u) ∧ (z = v ∧ w = u)) → (x =
z ∧
y = w)) |
41 | 36, 40 | syl6 29 |
. . . . . . 7
⊢ (((φ → (x = v ∧ y = u)) ∧ ([z / x][w / y]φ → (z = v ∧ w = u))) → ((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w))) |
42 | 41 | 2alimi 1560 |
. . . . . 6
⊢ (∀z∀w((φ → (x = v ∧ y = u)) ∧ ([z / x][w / y]φ → (z = v ∧ w = u))) → ∀z∀w((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w))) |
43 | 42 | 2alimi 1560 |
. . . . 5
⊢ (∀x∀y∀z∀w((φ → (x = v ∧ y = u)) ∧ ([z / x][w / y]φ → (z = v ∧ w = u))) → ∀x∀y∀z∀w((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w))) |
44 | 35, 43 | syl 15 |
. . . 4
⊢ (∀x∀y(φ → (x = v ∧ y = u)) → ∀x∀y∀z∀w((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w))) |
45 | 44 | exlimivv 1635 |
. . 3
⊢ (∃v∃u∀x∀y(φ → (x = v ∧ y = u)) → ∀x∀y∀z∀w((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w))) |
46 | 6, 45 | sylbir 204 |
. 2
⊢ (∃z∃w∀x∀y(φ → (x = z ∧ y = w)) → ∀x∀y∀z∀w((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w))) |
47 | | alrot4 1739 |
. . . . 5
⊢ (∀x∀y∀z∀w((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w)) ↔ ∀z∀w∀x∀y((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w))) |
48 | | pm3.21 435 |
. . . . . . . . . . . 12
⊢ ([z / x][w / y]φ → (φ → (φ ∧
[z / x][w / y]φ))) |
49 | 48 | imim1d 69 |
. . . . . . . . . . 11
⊢ ([z / x][w / y]φ → (((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w)) → (φ → (x = z ∧ y = w)))) |
50 | 13, 49 | alimd 1764 |
. . . . . . . . . 10
⊢ ([z / x][w / y]φ → (∀y((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w)) → ∀y(φ → (x = z ∧ y = w)))) |
51 | 9, 50 | alimd 1764 |
. . . . . . . . 9
⊢ ([z / x][w / y]φ → (∀x∀y((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w)) → ∀x∀y(φ → (x = z ∧ y = w)))) |
52 | 51 | com12 27 |
. . . . . . . 8
⊢ (∀x∀y((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w)) → ([z / x][w / y]φ → ∀x∀y(φ → (x = z ∧ y = w)))) |
53 | 52 | alimi 1559 |
. . . . . . 7
⊢ (∀w∀x∀y((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w)) → ∀w([z / x][w / y]φ → ∀x∀y(φ → (x = z ∧ y = w)))) |
54 | | exim 1575 |
. . . . . . 7
⊢ (∀w([z / x][w / y]φ → ∀x∀y(φ → (x = z ∧ y = w))) → (∃w[z / x][w / y]φ → ∃w∀x∀y(φ → (x = z ∧ y = w)))) |
55 | 53, 54 | syl 15 |
. . . . . 6
⊢ (∀w∀x∀y((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w)) → (∃w[z / x][w / y]φ → ∃w∀x∀y(φ → (x = z ∧ y = w)))) |
56 | 55 | alimi 1559 |
. . . . 5
⊢ (∀z∀w∀x∀y((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w)) → ∀z(∃w[z / x][w / y]φ → ∃w∀x∀y(φ → (x = z ∧ y = w)))) |
57 | 47, 56 | sylbi 187 |
. . . 4
⊢ (∀x∀y∀z∀w((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w)) → ∀z(∃w[z / x][w / y]φ → ∃w∀x∀y(φ → (x = z ∧ y = w)))) |
58 | | exim 1575 |
. . . 4
⊢ (∀z(∃w[z / x][w / y]φ → ∃w∀x∀y(φ → (x = z ∧ y = w))) → (∃z∃w[z / x][w / y]φ → ∃z∃w∀x∀y(φ → (x = z ∧ y = w)))) |
59 | 57, 58 | syl 15 |
. . 3
⊢ (∀x∀y∀z∀w((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w)) → (∃z∃w[z / x][w / y]φ → ∃z∃w∀x∀y(φ → (x = z ∧ y = w)))) |
60 | | alnex 1543 |
. . . . . 6
⊢ (∀w ¬
[z / x][w / y]φ ↔
¬ ∃w[z / x][w / y]φ) |
61 | 60 | albii 1566 |
. . . . 5
⊢ (∀z∀w ¬
[z / x][w / y]φ ↔
∀z
¬ ∃w[z / x][w / y]φ) |
62 | | alnex 1543 |
. . . . 5
⊢ (∀z ¬
∃w[z / x][w / y]φ ↔
¬ ∃z∃w[z / x][w / y]φ) |
63 | 61, 62 | bitri 240 |
. . . 4
⊢ (∀z∀w ¬
[z / x][w / y]φ ↔
¬ ∃z∃w[z / x][w / y]φ) |
64 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎz ¬ φ |
65 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎw ¬ φ |
66 | 9 | nfn 1793 |
. . . . . . 7
⊢ Ⅎx ¬ [z /
x][w /
y]φ |
67 | 13 | nfn 1793 |
. . . . . . 7
⊢ Ⅎy ¬ [z /
x][w /
y]φ |
68 | 18 | notbid 285 |
. . . . . . 7
⊢ ((x = z ∧ y = w) → (¬ φ ↔ ¬ [z / x][w / y]φ)) |
69 | 64, 65, 66, 67, 68 | cbval2 2004 |
. . . . . 6
⊢ (∀x∀y ¬
φ ↔ ∀z∀w ¬
[z / x][w / y]φ) |
70 | | pm2.21 100 |
. . . . . . 7
⊢ (¬ φ → (φ → (x = z ∧ y = w))) |
71 | 70 | 2alimi 1560 |
. . . . . 6
⊢ (∀x∀y ¬
φ → ∀x∀y(φ → (x = z ∧ y = w))) |
72 | 69, 71 | sylbir 204 |
. . . . 5
⊢ (∀z∀w ¬
[z / x][w / y]φ →
∀x∀y(φ → (x = z ∧ y = w))) |
73 | | 19.8a 1756 |
. . . . . 6
⊢ (∃w∀x∀y(φ → (x = z ∧ y = w)) → ∃z∃w∀x∀y(φ → (x = z ∧ y = w))) |
74 | 73 | 19.23bi 1759 |
. . . . 5
⊢ (∀x∀y(φ → (x = z ∧ y = w)) → ∃z∃w∀x∀y(φ → (x = z ∧ y = w))) |
75 | 72, 74 | syl 15 |
. . . 4
⊢ (∀z∀w ¬
[z / x][w / y]φ →
∃z∃w∀x∀y(φ → (x = z ∧ y = w))) |
76 | 63, 75 | sylbir 204 |
. . 3
⊢ (¬ ∃z∃w[z / x][w / y]φ → ∃z∃w∀x∀y(φ → (x = z ∧ y = w))) |
77 | 59, 76 | pm2.61d1 151 |
. 2
⊢ (∀x∀y∀z∀w((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w)) → ∃z∃w∀x∀y(φ → (x = z ∧ y = w))) |
78 | 46, 77 | impbii 180 |
1
⊢ (∃z∃w∀x∀y(φ → (x = z ∧ y = w)) ↔ ∀x∀y∀z∀w((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w))) |