NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hbald GIF version

Theorem hbald 1740
Description: Deduction form of bound-variable hypothesis builder hbal 1736. (Contributed by NM, 2-Jan-2002.)
Hypotheses
Ref Expression
hbald.1 (φyφ)
hbald.2 (φ → (ψxψ))
Assertion
Ref Expression
hbald (φ → (yψxyψ))

Proof of Theorem hbald
StepHypRef Expression
1 hbald.1 . . 3 (φyφ)
2 hbald.2 . . 3 (φ → (ψxψ))
31, 2alimdh 1563 . 2 (φ → (yψyxψ))
4 ax-7 1734 . 2 (yxψxyψ)
53, 4syl6 29 1 (φ → (yψxyψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1546  ax-5 1557  ax-7 1734
This theorem is referenced by:  dvelimhw  1849  nfald  1852  dvelimv  1939  dvelimh  1964  dvelimALT  2133  dvelimf-o  2180
  Copyright terms: Public domain W3C validator