Step | Hyp | Ref
| Expression |
1 | | f1oco 5309 |
. . . . 5
⊢ ((G:B–1-1-onto→C ∧ H:A–1-1-onto→B) →
(G ∘
H):A–1-1-onto→C) |
2 | 1 | ad2ant2r 727 |
. . . 4
⊢ (((G:B–1-1-onto→C ∧ ∀u ∈ B ∀v ∈ B (uSv ↔
(G ‘u)T(G ‘v)))
∧ (H:A–1-1-onto→B ∧ ∀z ∈ A ∀w ∈ A (zRw ↔
(H ‘z)S(H ‘w))))
→ (G ∘ H):A–1-1-onto→C) |
3 | 2 | ancoms 439 |
. . 3
⊢ (((H:A–1-1-onto→B ∧ ∀z ∈ A ∀w ∈ A (zRw ↔
(H ‘z)S(H ‘w)))
∧ (G:B–1-1-onto→C ∧ ∀u ∈ B ∀v ∈ B (uSv ↔
(G ‘u)T(G ‘v))))
→ (G ∘ H):A–1-1-onto→C) |
4 | | f1of 5288 |
. . . . . . . . 9
⊢ (H:A–1-1-onto→B →
H:A–→B) |
5 | | ffvelrn 5416 |
. . . . . . . . . . 11
⊢ ((H:A–→B
∧ x ∈ A) →
(H ‘x) ∈ B) |
6 | 5 | ex 423 |
. . . . . . . . . 10
⊢ (H:A–→B
→ (x ∈ A →
(H ‘x) ∈ B)) |
7 | | ffvelrn 5416 |
. . . . . . . . . . 11
⊢ ((H:A–→B
∧ y ∈ A) →
(H ‘y) ∈ B) |
8 | 7 | ex 423 |
. . . . . . . . . 10
⊢ (H:A–→B
→ (y ∈ A →
(H ‘y) ∈ B)) |
9 | 6, 8 | anim12d 546 |
. . . . . . . . 9
⊢ (H:A–→B
→ ((x ∈ A ∧ y ∈ A) →
((H ‘x) ∈ B ∧ (H ‘y)
∈ B))) |
10 | 4, 9 | syl 15 |
. . . . . . . 8
⊢ (H:A–1-1-onto→B →
((x ∈
A ∧
y ∈
A) → ((H ‘x)
∈ B ∧ (H
‘y) ∈ B))) |
11 | 10 | adantr 451 |
. . . . . . 7
⊢ ((H:A–1-1-onto→B ∧ ∀z ∈ A ∀w ∈ A (zRw ↔
(H ‘z)S(H ‘w)))
→ ((x ∈ A ∧ y ∈ A) →
((H ‘x) ∈ B ∧ (H ‘y)
∈ B))) |
12 | | breq1 4643 |
. . . . . . . . . . 11
⊢ (u = (H
‘x) → (uSv ↔ (H
‘x)Sv)) |
13 | | fveq2 5329 |
. . . . . . . . . . . 12
⊢ (u = (H
‘x) → (G ‘u) =
(G ‘(H ‘x))) |
14 | 13 | breq1d 4650 |
. . . . . . . . . . 11
⊢ (u = (H
‘x) → ((G ‘u)T(G ‘v)
↔ (G ‘(H ‘x))T(G ‘v))) |
15 | 12, 14 | bibi12d 312 |
. . . . . . . . . 10
⊢ (u = (H
‘x) → ((uSv ↔ (G
‘u)T(G
‘v)) ↔ ((H ‘x)Sv ↔ (G
‘(H ‘x))T(G ‘v)))) |
16 | | breq2 4644 |
. . . . . . . . . . 11
⊢ (v = (H
‘y) → ((H ‘x)Sv ↔ (H
‘x)S(H
‘y))) |
17 | | fveq2 5329 |
. . . . . . . . . . . 12
⊢ (v = (H
‘y) → (G ‘v) =
(G ‘(H ‘y))) |
18 | 17 | breq2d 4652 |
. . . . . . . . . . 11
⊢ (v = (H
‘y) → ((G ‘(H
‘x))T(G
‘v) ↔ (G ‘(H
‘x))T(G
‘(H ‘y)))) |
19 | 16, 18 | bibi12d 312 |
. . . . . . . . . 10
⊢ (v = (H
‘y) → (((H ‘x)Sv ↔ (G
‘(H ‘x))T(G ‘v))
↔ ((H ‘x)S(H ‘y)
↔ (G ‘(H ‘x))T(G ‘(H
‘y))))) |
20 | 15, 19 | rspc2v 2962 |
. . . . . . . . 9
⊢ (((H ‘x)
∈ B ∧ (H
‘y) ∈ B) →
(∀u
∈ B ∀v ∈ B (uSv ↔ (G
‘u)T(G
‘v)) → ((H ‘x)S(H ‘y)
↔ (G ‘(H ‘x))T(G ‘(H
‘y))))) |
21 | 20 | com12 27 |
. . . . . . . 8
⊢ (∀u ∈ B ∀v ∈ B (uSv ↔ (G
‘u)T(G
‘v)) → (((H ‘x)
∈ B ∧ (H
‘y) ∈ B) →
((H ‘x)S(H ‘y)
↔ (G ‘(H ‘x))T(G ‘(H
‘y))))) |
22 | 21 | adantl 452 |
. . . . . . 7
⊢ ((G:B–1-1-onto→C ∧ ∀u ∈ B ∀v ∈ B (uSv ↔
(G ‘u)T(G ‘v)))
→ (((H ‘x) ∈ B ∧ (H ‘y)
∈ B)
→ ((H ‘x)S(H ‘y)
↔ (G ‘(H ‘x))T(G ‘(H
‘y))))) |
23 | 11, 22 | sylan9 638 |
. . . . . 6
⊢ (((H:A–1-1-onto→B ∧ ∀z ∈ A ∀w ∈ A (zRw ↔
(H ‘z)S(H ‘w)))
∧ (G:B–1-1-onto→C ∧ ∀u ∈ B ∀v ∈ B (uSv ↔
(G ‘u)T(G ‘v))))
→ ((x ∈ A ∧ y ∈ A) →
((H ‘x)S(H ‘y)
↔ (G ‘(H ‘x))T(G ‘(H
‘y))))) |
24 | 23 | imp 418 |
. . . . 5
⊢ ((((H:A–1-1-onto→B ∧ ∀z ∈ A ∀w ∈ A (zRw ↔
(H ‘z)S(H ‘w)))
∧ (G:B–1-1-onto→C ∧ ∀u ∈ B ∀v ∈ B (uSv ↔
(G ‘u)T(G ‘v))))
∧ (x ∈ A ∧ y ∈ A)) →
((H ‘x)S(H ‘y)
↔ (G ‘(H ‘x))T(G ‘(H
‘y)))) |
25 | | breq1 4643 |
. . . . . . . . . 10
⊢ (z = x →
(zRw ↔
xRw)) |
26 | | fveq2 5329 |
. . . . . . . . . . 11
⊢ (z = x →
(H ‘z) = (H
‘x)) |
27 | 26 | breq1d 4650 |
. . . . . . . . . 10
⊢ (z = x →
((H ‘z)S(H ‘w)
↔ (H ‘x)S(H ‘w))) |
28 | 25, 27 | bibi12d 312 |
. . . . . . . . 9
⊢ (z = x →
((zRw ↔
(H ‘z)S(H ‘w))
↔ (xRw ↔
(H ‘x)S(H ‘w)))) |
29 | | breq2 4644 |
. . . . . . . . . 10
⊢ (w = y →
(xRw ↔
xRy)) |
30 | | fveq2 5329 |
. . . . . . . . . . 11
⊢ (w = y →
(H ‘w) = (H
‘y)) |
31 | 30 | breq2d 4652 |
. . . . . . . . . 10
⊢ (w = y →
((H ‘x)S(H ‘w)
↔ (H ‘x)S(H ‘y))) |
32 | 29, 31 | bibi12d 312 |
. . . . . . . . 9
⊢ (w = y →
((xRw ↔
(H ‘x)S(H ‘w))
↔ (xRy ↔
(H ‘x)S(H ‘y)))) |
33 | 28, 32 | rspc2v 2962 |
. . . . . . . 8
⊢ ((x ∈ A ∧ y ∈ A) → (∀z ∈ A ∀w ∈ A (zRw ↔ (H
‘z)S(H
‘w)) → (xRy ↔ (H
‘x)S(H
‘y)))) |
34 | 33 | impcom 419 |
. . . . . . 7
⊢ ((∀z ∈ A ∀w ∈ A (zRw ↔ (H
‘z)S(H
‘w)) ∧ (x ∈ A ∧ y ∈ A)) →
(xRy ↔
(H ‘x)S(H ‘y))) |
35 | 34 | adantll 694 |
. . . . . 6
⊢ (((H:A–1-1-onto→B ∧ ∀z ∈ A ∀w ∈ A (zRw ↔
(H ‘z)S(H ‘w)))
∧ (x ∈ A ∧ y ∈ A)) →
(xRy ↔
(H ‘x)S(H ‘y))) |
36 | 35 | adantlr 695 |
. . . . 5
⊢ ((((H:A–1-1-onto→B ∧ ∀z ∈ A ∀w ∈ A (zRw ↔
(H ‘z)S(H ‘w)))
∧ (G:B–1-1-onto→C ∧ ∀u ∈ B ∀v ∈ B (uSv ↔
(G ‘u)T(G ‘v))))
∧ (x ∈ A ∧ y ∈ A)) →
(xRy ↔
(H ‘x)S(H ‘y))) |
37 | 4 | ad2antrr 706 |
. . . . . 6
⊢ (((H:A–1-1-onto→B ∧ ∀z ∈ A ∀w ∈ A (zRw ↔
(H ‘z)S(H ‘w)))
∧ (G:B–1-1-onto→C ∧ ∀u ∈ B ∀v ∈ B (uSv ↔
(G ‘u)T(G ‘v))))
→ H:A–→B) |
38 | | fvco3 5385 |
. . . . . . . 8
⊢ ((H:A–→B
∧ x ∈ A) →
((G ∘
H) ‘x) = (G
‘(H ‘x))) |
39 | | fvco3 5385 |
. . . . . . . 8
⊢ ((H:A–→B
∧ y ∈ A) →
((G ∘
H) ‘y) = (G
‘(H ‘y))) |
40 | 38, 39 | breqan12d 4655 |
. . . . . . 7
⊢ (((H:A–→B
∧ x ∈ A) ∧ (H:A–→B
∧ y ∈ A)) →
(((G ∘
H) ‘x)T((G ∘ H) ‘y)
↔ (G ‘(H ‘x))T(G ‘(H
‘y)))) |
41 | 40 | anandis 803 |
. . . . . 6
⊢ ((H:A–→B
∧ (x ∈ A ∧ y ∈ A)) →
(((G ∘
H) ‘x)T((G ∘ H) ‘y)
↔ (G ‘(H ‘x))T(G ‘(H
‘y)))) |
42 | 37, 41 | sylan 457 |
. . . . 5
⊢ ((((H:A–1-1-onto→B ∧ ∀z ∈ A ∀w ∈ A (zRw ↔
(H ‘z)S(H ‘w)))
∧ (G:B–1-1-onto→C ∧ ∀u ∈ B ∀v ∈ B (uSv ↔
(G ‘u)T(G ‘v))))
∧ (x ∈ A ∧ y ∈ A)) →
(((G ∘
H) ‘x)T((G ∘ H) ‘y)
↔ (G ‘(H ‘x))T(G ‘(H
‘y)))) |
43 | 24, 36, 42 | 3bitr4d 276 |
. . . 4
⊢ ((((H:A–1-1-onto→B ∧ ∀z ∈ A ∀w ∈ A (zRw ↔
(H ‘z)S(H ‘w)))
∧ (G:B–1-1-onto→C ∧ ∀u ∈ B ∀v ∈ B (uSv ↔
(G ‘u)T(G ‘v))))
∧ (x ∈ A ∧ y ∈ A)) →
(xRy ↔
((G ∘
H) ‘x)T((G ∘ H) ‘y))) |
44 | 43 | ralrimivva 2707 |
. . 3
⊢ (((H:A–1-1-onto→B ∧ ∀z ∈ A ∀w ∈ A (zRw ↔
(H ‘z)S(H ‘w)))
∧ (G:B–1-1-onto→C ∧ ∀u ∈ B ∀v ∈ B (uSv ↔
(G ‘u)T(G ‘v))))
→ ∀x ∈ A ∀y ∈ A (xRy ↔
((G ∘
H) ‘x)T((G ∘ H) ‘y))) |
45 | 3, 44 | jca 518 |
. 2
⊢ (((H:A–1-1-onto→B ∧ ∀z ∈ A ∀w ∈ A (zRw ↔
(H ‘z)S(H ‘w)))
∧ (G:B–1-1-onto→C ∧ ∀u ∈ B ∀v ∈ B (uSv ↔
(G ‘u)T(G ‘v))))
→ ((G ∘ H):A–1-1-onto→C ∧ ∀x ∈ A ∀y ∈ A (xRy ↔
((G ∘
H) ‘x)T((G ∘ H) ‘y)))) |
46 | | df-iso 4797 |
. . 3
⊢ (H Isom R,
S (A,
B) ↔ (H:A–1-1-onto→B ∧ ∀z ∈ A ∀w ∈ A (zRw ↔
(H ‘z)S(H ‘w)))) |
47 | | df-iso 4797 |
. . 3
⊢ (G Isom S,
T (B,
C) ↔ (G:B–1-1-onto→C ∧ ∀u ∈ B ∀v ∈ B (uSv ↔
(G ‘u)T(G ‘v)))) |
48 | 46, 47 | anbi12i 678 |
. 2
⊢ ((H Isom R,
S (A,
B) ∧
G Isom S, T (B, C)) ↔
((H:A–1-1-onto→B ∧ ∀z ∈ A ∀w ∈ A (zRw ↔
(H ‘z)S(H ‘w)))
∧ (G:B–1-1-onto→C ∧ ∀u ∈ B ∀v ∈ B (uSv ↔
(G ‘u)T(G ‘v))))) |
49 | | df-iso 4797 |
. 2
⊢ ((G ∘ H) Isom R,
T (A,
C) ↔ ((G ∘ H):A–1-1-onto→C ∧ ∀x ∈ A ∀y ∈ A (xRy ↔
((G ∘
H) ‘x)T((G ∘ H) ‘y)))) |
50 | 45, 48, 49 | 3imtr4i 257 |
1
⊢ ((H Isom R,
S (A,
B) ∧
G Isom S, T (B, C)) →
(G ∘
H) Isom R, T (A, C)) |