Step | Hyp | Ref
| Expression |
1 | | simpl 443 |
. 2
⊢ ((H:A–1-1-onto→B ∧ S = {〈z, w〉 ∣ ∃x ∈ A ∃y ∈ A ((z =
(H ‘x) ∧ w = (H
‘y)) ∧ xRy)}) →
H:A–1-1-onto→B) |
2 | | f1of1 5287 |
. . 3
⊢ (H:A–1-1-onto→B →
H:A–1-1→B) |
3 | | df-br 4641 |
. . . . 5
⊢ ((H ‘v)S(H ‘u)
↔ 〈(H ‘v),
(H ‘u)〉 ∈ S) |
4 | | eleq2 2414 |
. . . . . . 7
⊢ (S = {〈z, w〉 ∣ ∃x ∈ A ∃y ∈ A ((z = (H
‘x) ∧ w = (H ‘y))
∧ xRy)} → (〈(H
‘v), (H ‘u)〉 ∈ S ↔ 〈(H
‘v), (H ‘u)〉 ∈ {〈z, w〉 ∣ ∃x ∈ A ∃y ∈ A ((z =
(H ‘x) ∧ w = (H
‘y)) ∧ xRy)})) |
5 | | fvex 5340 |
. . . . . . . . 9
⊢ (H ‘v)
∈ V |
6 | | fvex 5340 |
. . . . . . . . 9
⊢ (H ‘u)
∈ V |
7 | | eqeq1 2359 |
. . . . . . . . . . . 12
⊢ (z = (H
‘v) → (z = (H
‘x) ↔ (H ‘v) =
(H ‘x))) |
8 | 7 | anbi1d 685 |
. . . . . . . . . . 11
⊢ (z = (H
‘v) → ((z = (H
‘x) ∧ w = (H ‘y))
↔ ((H ‘v) = (H
‘x) ∧ w = (H ‘y)))) |
9 | 8 | anbi1d 685 |
. . . . . . . . . 10
⊢ (z = (H
‘v) → (((z = (H
‘x) ∧ w = (H ‘y))
∧ xRy) ↔ (((H
‘v) = (H ‘x)
∧ w =
(H ‘y)) ∧ xRy))) |
10 | 9 | 2rexbidv 2658 |
. . . . . . . . 9
⊢ (z = (H
‘v) → (∃x ∈ A ∃y ∈ A ((z = (H
‘x) ∧ w = (H ‘y))
∧ xRy) ↔ ∃x ∈ A ∃y ∈ A (((H ‘v) =
(H ‘x) ∧ w = (H
‘y)) ∧ xRy))) |
11 | | eqeq1 2359 |
. . . . . . . . . . . 12
⊢ (w = (H
‘u) → (w = (H
‘y) ↔ (H ‘u) =
(H ‘y))) |
12 | 11 | anbi2d 684 |
. . . . . . . . . . 11
⊢ (w = (H
‘u) → (((H ‘v) =
(H ‘x) ∧ w = (H
‘y)) ↔ ((H ‘v) =
(H ‘x) ∧ (H ‘u) =
(H ‘y)))) |
13 | 12 | anbi1d 685 |
. . . . . . . . . 10
⊢ (w = (H
‘u) → ((((H ‘v) =
(H ‘x) ∧ w = (H
‘y)) ∧ xRy) ↔
(((H ‘v) = (H
‘x) ∧ (H
‘u) = (H ‘y))
∧ xRy))) |
14 | 13 | 2rexbidv 2658 |
. . . . . . . . 9
⊢ (w = (H
‘u) → (∃x ∈ A ∃y ∈ A (((H ‘v) =
(H ‘x) ∧ w = (H
‘y)) ∧ xRy) ↔ ∃x ∈ A ∃y ∈ A (((H ‘v) =
(H ‘x) ∧ (H ‘u) =
(H ‘y)) ∧ xRy))) |
15 | 5, 6, 10, 14 | opelopab 4709 |
. . . . . . . 8
⊢ (〈(H
‘v), (H ‘u)〉 ∈ {〈z, w〉 ∣ ∃x ∈ A ∃y ∈ A ((z =
(H ‘x) ∧ w = (H
‘y)) ∧ xRy)} ↔
∃x ∈ A ∃y ∈ A (((H ‘v) =
(H ‘x) ∧ (H ‘u) =
(H ‘y)) ∧ xRy)) |
16 | | anass 630 |
. . . . . . . . . . . . . . 15
⊢ ((((H ‘v) =
(H ‘x) ∧ (H ‘u) =
(H ‘y)) ∧ xRy) ↔ ((H
‘v) = (H ‘x)
∧ ((H
‘u) = (H ‘y)
∧ xRy))) |
17 | | f1fveq 5474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((H:A–1-1→B
∧ (v ∈ A ∧ x ∈ A)) →
((H ‘v) = (H
‘x) ↔ v = x)) |
18 | | eqcom 2355 |
. . . . . . . . . . . . . . . . . 18
⊢ (v = x ↔
x = v) |
19 | 17, 18 | syl6bb 252 |
. . . . . . . . . . . . . . . . 17
⊢ ((H:A–1-1→B
∧ (v ∈ A ∧ x ∈ A)) →
((H ‘v) = (H
‘x) ↔ x = v)) |
20 | 19 | anassrs 629 |
. . . . . . . . . . . . . . . 16
⊢ (((H:A–1-1→B
∧ v ∈ A) ∧ x ∈ A) →
((H ‘v) = (H
‘x) ↔ x = v)) |
21 | 20 | anbi1d 685 |
. . . . . . . . . . . . . . 15
⊢ (((H:A–1-1→B
∧ v ∈ A) ∧ x ∈ A) →
(((H ‘v) = (H
‘x) ∧ ((H
‘u) = (H ‘y)
∧ xRy)) ↔ (x =
v ∧
((H ‘u) = (H
‘y) ∧ xRy)))) |
22 | 16, 21 | syl5bb 248 |
. . . . . . . . . . . . . 14
⊢ (((H:A–1-1→B
∧ v ∈ A) ∧ x ∈ A) →
((((H ‘v) = (H
‘x) ∧ (H
‘u) = (H ‘y))
∧ xRy) ↔ (x =
v ∧
((H ‘u) = (H
‘y) ∧ xRy)))) |
23 | 22 | rexbidv 2636 |
. . . . . . . . . . . . 13
⊢ (((H:A–1-1→B
∧ v ∈ A) ∧ x ∈ A) →
(∃y
∈ A
(((H ‘v) = (H
‘x) ∧ (H
‘u) = (H ‘y))
∧ xRy) ↔ ∃y ∈ A (x = v ∧ ((H
‘u) = (H ‘y)
∧ xRy)))) |
24 | | r19.42v 2766 |
. . . . . . . . . . . . 13
⊢ (∃y ∈ A (x = v ∧ ((H
‘u) = (H ‘y)
∧ xRy)) ↔ (x =
v ∧ ∃y ∈ A ((H ‘u) =
(H ‘y) ∧ xRy))) |
25 | 23, 24 | syl6bb 252 |
. . . . . . . . . . . 12
⊢ (((H:A–1-1→B
∧ v ∈ A) ∧ x ∈ A) →
(∃y
∈ A
(((H ‘v) = (H
‘x) ∧ (H
‘u) = (H ‘y))
∧ xRy) ↔ (x =
v ∧ ∃y ∈ A ((H ‘u) =
(H ‘y) ∧ xRy)))) |
26 | 25 | rexbidva 2632 |
. . . . . . . . . . 11
⊢ ((H:A–1-1→B
∧ v ∈ A) →
(∃x
∈ A ∃y ∈ A (((H ‘v) =
(H ‘x) ∧ (H ‘u) =
(H ‘y)) ∧ xRy) ↔ ∃x ∈ A (x = v ∧ ∃y ∈ A ((H
‘u) = (H ‘y)
∧ xRy)))) |
27 | | breq1 4643 |
. . . . . . . . . . . . . . 15
⊢ (x = v →
(xRy ↔
vRy)) |
28 | 27 | anbi2d 684 |
. . . . . . . . . . . . . 14
⊢ (x = v →
(((H ‘u) = (H
‘y) ∧ xRy) ↔
((H ‘u) = (H
‘y) ∧ vRy))) |
29 | 28 | rexbidv 2636 |
. . . . . . . . . . . . 13
⊢ (x = v →
(∃y
∈ A
((H ‘u) = (H
‘y) ∧ xRy) ↔ ∃y ∈ A ((H ‘u) =
(H ‘y) ∧ vRy))) |
30 | 29 | ceqsrexv 2973 |
. . . . . . . . . . . 12
⊢ (v ∈ A → (∃x ∈ A (x = v ∧ ∃y ∈ A ((H
‘u) = (H ‘y)
∧ xRy)) ↔ ∃y ∈ A ((H ‘u) =
(H ‘y) ∧ vRy))) |
31 | 30 | adantl 452 |
. . . . . . . . . . 11
⊢ ((H:A–1-1→B
∧ v ∈ A) →
(∃x
∈ A
(x = v
∧ ∃y ∈ A ((H
‘u) = (H ‘y)
∧ xRy)) ↔ ∃y ∈ A ((H ‘u) =
(H ‘y) ∧ vRy))) |
32 | 26, 31 | bitrd 244 |
. . . . . . . . . 10
⊢ ((H:A–1-1→B
∧ v ∈ A) →
(∃x
∈ A ∃y ∈ A (((H ‘v) =
(H ‘x) ∧ (H ‘u) =
(H ‘y)) ∧ xRy) ↔ ∃y ∈ A ((H ‘u) =
(H ‘y) ∧ vRy))) |
33 | | f1fveq 5474 |
. . . . . . . . . . . . . . 15
⊢ ((H:A–1-1→B
∧ (u ∈ A ∧ y ∈ A)) →
((H ‘u) = (H
‘y) ↔ u = y)) |
34 | | eqcom 2355 |
. . . . . . . . . . . . . . 15
⊢ (u = y ↔
y = u) |
35 | 33, 34 | syl6bb 252 |
. . . . . . . . . . . . . 14
⊢ ((H:A–1-1→B
∧ (u ∈ A ∧ y ∈ A)) →
((H ‘u) = (H
‘y) ↔ y = u)) |
36 | 35 | anassrs 629 |
. . . . . . . . . . . . 13
⊢ (((H:A–1-1→B
∧ u ∈ A) ∧ y ∈ A) →
((H ‘u) = (H
‘y) ↔ y = u)) |
37 | 36 | anbi1d 685 |
. . . . . . . . . . . 12
⊢ (((H:A–1-1→B
∧ u ∈ A) ∧ y ∈ A) →
(((H ‘u) = (H
‘y) ∧ vRy) ↔
(y = u
∧ vRy))) |
38 | 37 | rexbidva 2632 |
. . . . . . . . . . 11
⊢ ((H:A–1-1→B
∧ u ∈ A) →
(∃y
∈ A
((H ‘u) = (H
‘y) ∧ vRy) ↔ ∃y ∈ A (y = u ∧ vRy))) |
39 | | breq2 4644 |
. . . . . . . . . . . . 13
⊢ (y = u →
(vRy ↔
vRu)) |
40 | 39 | ceqsrexv 2973 |
. . . . . . . . . . . 12
⊢ (u ∈ A → (∃y ∈ A (y = u ∧ vRy) ↔
vRu)) |
41 | 40 | adantl 452 |
. . . . . . . . . . 11
⊢ ((H:A–1-1→B
∧ u ∈ A) →
(∃y
∈ A
(y = u
∧ vRy) ↔ vRu)) |
42 | 38, 41 | bitrd 244 |
. . . . . . . . . 10
⊢ ((H:A–1-1→B
∧ u ∈ A) →
(∃y
∈ A
((H ‘u) = (H
‘y) ∧ vRy) ↔
vRu)) |
43 | 32, 42 | sylan9bb 680 |
. . . . . . . . 9
⊢ (((H:A–1-1→B
∧ v ∈ A) ∧ (H:A–1-1→B ∧ u ∈ A)) →
(∃x
∈ A ∃y ∈ A (((H ‘v) =
(H ‘x) ∧ (H ‘u) =
(H ‘y)) ∧ xRy) ↔ vRu)) |
44 | 43 | anandis 803 |
. . . . . . . 8
⊢ ((H:A–1-1→B
∧ (v ∈ A ∧ u ∈ A)) →
(∃x
∈ A ∃y ∈ A (((H ‘v) =
(H ‘x) ∧ (H ‘u) =
(H ‘y)) ∧ xRy) ↔ vRu)) |
45 | 15, 44 | syl5bb 248 |
. . . . . . 7
⊢ ((H:A–1-1→B
∧ (v ∈ A ∧ u ∈ A)) →
(〈(H
‘v), (H ‘u)〉 ∈ {〈z, w〉 ∣ ∃x ∈ A ∃y ∈ A ((z =
(H ‘x) ∧ w = (H
‘y)) ∧ xRy)} ↔
vRu)) |
46 | 4, 45 | sylan9bbr 681 |
. . . . . 6
⊢ (((H:A–1-1→B
∧ (v ∈ A ∧ u ∈ A)) ∧ S = {〈z, w〉 ∣ ∃x ∈ A ∃y ∈ A ((z =
(H ‘x) ∧ w = (H
‘y)) ∧ xRy)}) →
(〈(H
‘v), (H ‘u)〉 ∈ S ↔ vRu)) |
47 | 46 | an32s 779 |
. . . . 5
⊢ (((H:A–1-1→B
∧ S =
{〈z,
w〉 ∣ ∃x ∈ A ∃y ∈ A ((z =
(H ‘x) ∧ w = (H
‘y)) ∧ xRy)}) ∧ (v ∈ A ∧ u ∈ A)) →
(〈(H
‘v), (H ‘u)〉 ∈ S ↔ vRu)) |
48 | 3, 47 | syl5rbb 249 |
. . . 4
⊢ (((H:A–1-1→B
∧ S =
{〈z,
w〉 ∣ ∃x ∈ A ∃y ∈ A ((z =
(H ‘x) ∧ w = (H
‘y)) ∧ xRy)}) ∧ (v ∈ A ∧ u ∈ A)) →
(vRu ↔
(H ‘v)S(H ‘u))) |
49 | 48 | ralrimivva 2707 |
. . 3
⊢ ((H:A–1-1→B
∧ S =
{〈z,
w〉 ∣ ∃x ∈ A ∃y ∈ A ((z =
(H ‘x) ∧ w = (H
‘y)) ∧ xRy)}) →
∀v
∈ A ∀u ∈ A (vRu ↔ (H
‘v)S(H
‘u))) |
50 | 2, 49 | sylan 457 |
. 2
⊢ ((H:A–1-1-onto→B ∧ S = {〈z, w〉 ∣ ∃x ∈ A ∃y ∈ A ((z =
(H ‘x) ∧ w = (H
‘y)) ∧ xRy)}) →
∀v
∈ A ∀u ∈ A (vRu ↔ (H
‘v)S(H
‘u))) |
51 | | df-iso 4797 |
. 2
⊢ (H Isom R,
S (A,
B) ↔ (H:A–1-1-onto→B ∧ ∀v ∈ A ∀u ∈ A (vRu ↔
(H ‘v)S(H ‘u)))) |
52 | 1, 50, 51 | sylanbrc 645 |
1
⊢ ((H:A–1-1-onto→B ∧ S = {〈z, w〉 ∣ ∃x ∈ A ∃y ∈ A ((z =
(H ‘x) ∧ w = (H
‘y)) ∧ xRy)}) →
H Isom R, S (A, B)) |