| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > anandir | GIF version | ||
| Description: Distribution of conjunction over conjunction. (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| anandir | ⊢ (((φ ∧ ψ) ∧ χ) ↔ ((φ ∧ χ) ∧ (ψ ∧ χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 625 | . . 3 ⊢ ((χ ∧ χ) ↔ χ) | |
| 2 | 1 | anbi2i 675 | . 2 ⊢ (((φ ∧ ψ) ∧ (χ ∧ χ)) ↔ ((φ ∧ ψ) ∧ χ)) |
| 3 | an4 797 | . 2 ⊢ (((φ ∧ ψ) ∧ (χ ∧ χ)) ↔ ((φ ∧ χ) ∧ (ψ ∧ χ))) | |
| 4 | 2, 3 | bitr3i 242 | 1 ⊢ (((φ ∧ ψ) ∧ χ) ↔ ((φ ∧ χ) ∧ (ψ ∧ χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: cadan 1392 fununi 5161 imadif 5172 restxp 5787 |
| Copyright terms: Public domain | W3C validator |