| Step | Hyp | Ref
 | Expression | 
| 1 |   | dff12 5258 | 
. 2
⊢ (F:A–1-1→B
↔ (F:A–→B
∧ ∀z∃*x xFz)) | 
| 2 |   | ffn 5224 | 
. . . 4
⊢ (F:A–→B
→ F Fn A) | 
| 3 |   | breldm 4912 | 
. . . . . . . . . . . . . 14
⊢ (xFz → x ∈ dom F) | 
| 4 |   | fndm 5183 | 
. . . . . . . . . . . . . . 15
⊢ (F Fn A →
dom F = A) | 
| 5 | 4 | eleq2d 2420 | 
. . . . . . . . . . . . . 14
⊢ (F Fn A →
(x ∈ dom
F ↔ x ∈ A)) | 
| 6 | 3, 5 | syl5ib 210 | 
. . . . . . . . . . . . 13
⊢ (F Fn A →
(xFz →
x ∈
A)) | 
| 7 |   | breldm 4912 | 
. . . . . . . . . . . . . 14
⊢ (yFz → y ∈ dom F) | 
| 8 | 4 | eleq2d 2420 | 
. . . . . . . . . . . . . 14
⊢ (F Fn A →
(y ∈ dom
F ↔ y ∈ A)) | 
| 9 | 7, 8 | syl5ib 210 | 
. . . . . . . . . . . . 13
⊢ (F Fn A →
(yFz →
y ∈
A)) | 
| 10 | 6, 9 | anim12d 546 | 
. . . . . . . . . . . 12
⊢ (F Fn A →
((xFz ∧ yFz) →
(x ∈
A ∧
y ∈
A))) | 
| 11 | 10 | pm4.71rd 616 | 
. . . . . . . . . . 11
⊢ (F Fn A →
((xFz ∧ yFz) ↔
((x ∈
A ∧
y ∈
A) ∧
(xFz ∧ yFz)))) | 
| 12 |   | eqcom 2355 | 
. . . . . . . . . . . . . . 15
⊢ (z = (F
‘x) ↔ (F ‘x) =
z) | 
| 13 |   | fnbrfvb 5359 | 
. . . . . . . . . . . . . . 15
⊢ ((F Fn A ∧ x ∈ A) →
((F ‘x) = z ↔
xFz)) | 
| 14 | 12, 13 | syl5bb 248 | 
. . . . . . . . . . . . . 14
⊢ ((F Fn A ∧ x ∈ A) →
(z = (F
‘x) ↔ xFz)) | 
| 15 |   | eqcom 2355 | 
. . . . . . . . . . . . . . 15
⊢ (z = (F
‘y) ↔ (F ‘y) =
z) | 
| 16 |   | fnbrfvb 5359 | 
. . . . . . . . . . . . . . 15
⊢ ((F Fn A ∧ y ∈ A) →
((F ‘y) = z ↔
yFz)) | 
| 17 | 15, 16 | syl5bb 248 | 
. . . . . . . . . . . . . 14
⊢ ((F Fn A ∧ y ∈ A) →
(z = (F
‘y) ↔ yFz)) | 
| 18 | 14, 17 | bi2anan9 843 | 
. . . . . . . . . . . . 13
⊢ (((F Fn A ∧ x ∈ A) ∧ (F Fn A ∧ y ∈ A)) → ((z =
(F ‘x) ∧ z = (F
‘y)) ↔ (xFz ∧ yFz))) | 
| 19 | 18 | anandis 803 | 
. . . . . . . . . . . 12
⊢ ((F Fn A ∧ (x ∈ A ∧ y ∈ A)) →
((z = (F ‘x)
∧ z =
(F ‘y)) ↔ (xFz ∧ yFz))) | 
| 20 | 19 | pm5.32da 622 | 
. . . . . . . . . . 11
⊢ (F Fn A →
(((x ∈
A ∧
y ∈
A) ∧
(z = (F
‘x) ∧ z = (F ‘y)))
↔ ((x ∈ A ∧ y ∈ A) ∧ (xFz ∧ yFz)))) | 
| 21 | 11, 20 | bitr4d 247 | 
. . . . . . . . . 10
⊢ (F Fn A →
((xFz ∧ yFz) ↔
((x ∈
A ∧
y ∈
A) ∧
(z = (F
‘x) ∧ z = (F ‘y))))) | 
| 22 | 21 | imbi1d 308 | 
. . . . . . . . 9
⊢ (F Fn A →
(((xFz ∧ yFz) →
x = y)
↔ (((x ∈ A ∧ y ∈ A) ∧ (z = (F ‘x)
∧ z =
(F ‘y))) → x =
y))) | 
| 23 |   | impexp 433 | 
. . . . . . . . 9
⊢ ((((x ∈ A ∧ y ∈ A) ∧ (z = (F
‘x) ∧ z = (F ‘y)))
→ x = y) ↔ ((x
∈ A ∧ y ∈ A) →
((z = (F ‘x)
∧ z =
(F ‘y)) → x =
y))) | 
| 24 | 22, 23 | syl6bb 252 | 
. . . . . . . 8
⊢ (F Fn A →
(((xFz ∧ yFz) →
x = y)
↔ ((x ∈ A ∧ y ∈ A) →
((z = (F ‘x)
∧ z =
(F ‘y)) → x =
y)))) | 
| 25 | 24 | albidv 1625 | 
. . . . . . 7
⊢ (F Fn A →
(∀z((xFz ∧ yFz) →
x = y)
↔ ∀z((x ∈ A ∧ y ∈ A) →
((z = (F ‘x)
∧ z =
(F ‘y)) → x =
y)))) | 
| 26 |   | 19.21v 1890 | 
. . . . . . . 8
⊢ (∀z((x ∈ A ∧ y ∈ A) → ((z =
(F ‘x) ∧ z = (F
‘y)) → x = y)) ↔
((x ∈
A ∧
y ∈
A) → ∀z((z = (F
‘x) ∧ z = (F ‘y))
→ x = y))) | 
| 27 |   | 19.23v 1891 | 
. . . . . . . . . 10
⊢ (∀z((z = (F
‘x) ∧ z = (F ‘y))
→ x = y) ↔ (∃z(z = (F
‘x) ∧ z = (F ‘y))
→ x = y)) | 
| 28 |   | fvex 5340 | 
. . . . . . . . . . . 12
⊢ (F ‘x)
∈ V | 
| 29 | 28 | eqvinc 2967 | 
. . . . . . . . . . 11
⊢ ((F ‘x) =
(F ‘y) ↔ ∃z(z = (F
‘x) ∧ z = (F ‘y))) | 
| 30 | 29 | imbi1i 315 | 
. . . . . . . . . 10
⊢ (((F ‘x) =
(F ‘y) → x =
y) ↔ (∃z(z = (F
‘x) ∧ z = (F ‘y))
→ x = y)) | 
| 31 | 27, 30 | bitr4i 243 | 
. . . . . . . . 9
⊢ (∀z((z = (F
‘x) ∧ z = (F ‘y))
→ x = y) ↔ ((F
‘x) = (F ‘y)
→ x = y)) | 
| 32 | 31 | imbi2i 303 | 
. . . . . . . 8
⊢ (((x ∈ A ∧ y ∈ A) → ∀z((z = (F
‘x) ∧ z = (F ‘y))
→ x = y)) ↔ ((x
∈ A ∧ y ∈ A) →
((F ‘x) = (F
‘y) → x = y))) | 
| 33 | 26, 32 | bitri 240 | 
. . . . . . 7
⊢ (∀z((x ∈ A ∧ y ∈ A) → ((z =
(F ‘x) ∧ z = (F
‘y)) → x = y)) ↔
((x ∈
A ∧
y ∈
A) → ((F ‘x) =
(F ‘y) → x =
y))) | 
| 34 | 25, 33 | syl6bb 252 | 
. . . . . 6
⊢ (F Fn A →
(∀z((xFz ∧ yFz) →
x = y)
↔ ((x ∈ A ∧ y ∈ A) →
((F ‘x) = (F
‘y) → x = y)))) | 
| 35 | 34 | 2albidv 1627 | 
. . . . 5
⊢ (F Fn A →
(∀x∀y∀z((xFz ∧ yFz) →
x = y)
↔ ∀x∀y((x ∈ A ∧ y ∈ A) →
((F ‘x) = (F
‘y) → x = y)))) | 
| 36 |   | breq1 4643 | 
. . . . . . . 8
⊢ (x = y →
(xFz ↔
yFz)) | 
| 37 | 36 | mo4 2237 | 
. . . . . . 7
⊢ (∃*x xFz ↔ ∀x∀y((xFz ∧ yFz) → x =
y)) | 
| 38 | 37 | albii 1566 | 
. . . . . 6
⊢ (∀z∃*x xFz ↔ ∀z∀x∀y((xFz ∧ yFz) → x =
y)) | 
| 39 |   | alcom 1737 | 
. . . . . 6
⊢ (∀z∀x∀y((xFz ∧ yFz) → x =
y) ↔ ∀x∀z∀y((xFz ∧ yFz) → x =
y)) | 
| 40 |   | alcom 1737 | 
. . . . . . 7
⊢ (∀z∀y((xFz ∧ yFz) → x =
y) ↔ ∀y∀z((xFz ∧ yFz) → x =
y)) | 
| 41 | 40 | albii 1566 | 
. . . . . 6
⊢ (∀x∀z∀y((xFz ∧ yFz) → x =
y) ↔ ∀x∀y∀z((xFz ∧ yFz) → x =
y)) | 
| 42 | 38, 39, 41 | 3bitri 262 | 
. . . . 5
⊢ (∀z∃*x xFz ↔ ∀x∀y∀z((xFz ∧ yFz) → x =
y)) | 
| 43 |   | r2al 2652 | 
. . . . 5
⊢ (∀x ∈ A ∀y ∈ A ((F ‘x) =
(F ‘y) → x =
y) ↔ ∀x∀y((x ∈ A ∧ y ∈ A) → ((F
‘x) = (F ‘y)
→ x = y))) | 
| 44 | 35, 42, 43 | 3bitr4g 279 | 
. . . 4
⊢ (F Fn A →
(∀z∃*x xFz ↔ ∀x ∈ A ∀y ∈ A ((F ‘x) =
(F ‘y) → x =
y))) | 
| 45 | 2, 44 | syl 15 | 
. . 3
⊢ (F:A–→B
→ (∀z∃*x xFz ↔ ∀x ∈ A ∀y ∈ A ((F ‘x) =
(F ‘y) → x =
y))) | 
| 46 | 45 | pm5.32i 618 | 
. 2
⊢ ((F:A–→B
∧ ∀z∃*x xFz) ↔ (F:A–→B
∧ ∀x ∈ A ∀y ∈ A ((F ‘x) =
(F ‘y) → x =
y))) | 
| 47 | 1, 46 | bitri 240 | 
1
⊢ (F:A–1-1→B
↔ (F:A–→B
∧ ∀x ∈ A ∀y ∈ A ((F ‘x) =
(F ‘y) → x =
y))) |