| Step | Hyp | Ref
| Expression |
| 1 | | dff12 5258 |
. 2
⊢ (F:A–1-1→B
↔ (F:A–→B
∧ ∀z∃*x xFz)) |
| 2 | | ffn 5224 |
. . . 4
⊢ (F:A–→B
→ F Fn A) |
| 3 | | breldm 4912 |
. . . . . . . . . . . . . 14
⊢ (xFz → x ∈ dom F) |
| 4 | | fndm 5183 |
. . . . . . . . . . . . . . 15
⊢ (F Fn A →
dom F = A) |
| 5 | 4 | eleq2d 2420 |
. . . . . . . . . . . . . 14
⊢ (F Fn A →
(x ∈ dom
F ↔ x ∈ A)) |
| 6 | 3, 5 | syl5ib 210 |
. . . . . . . . . . . . 13
⊢ (F Fn A →
(xFz →
x ∈
A)) |
| 7 | | breldm 4912 |
. . . . . . . . . . . . . 14
⊢ (yFz → y ∈ dom F) |
| 8 | 4 | eleq2d 2420 |
. . . . . . . . . . . . . 14
⊢ (F Fn A →
(y ∈ dom
F ↔ y ∈ A)) |
| 9 | 7, 8 | syl5ib 210 |
. . . . . . . . . . . . 13
⊢ (F Fn A →
(yFz →
y ∈
A)) |
| 10 | 6, 9 | anim12d 546 |
. . . . . . . . . . . 12
⊢ (F Fn A →
((xFz ∧ yFz) →
(x ∈
A ∧
y ∈
A))) |
| 11 | 10 | pm4.71rd 616 |
. . . . . . . . . . 11
⊢ (F Fn A →
((xFz ∧ yFz) ↔
((x ∈
A ∧
y ∈
A) ∧
(xFz ∧ yFz)))) |
| 12 | | eqcom 2355 |
. . . . . . . . . . . . . . 15
⊢ (z = (F
‘x) ↔ (F ‘x) =
z) |
| 13 | | fnbrfvb 5359 |
. . . . . . . . . . . . . . 15
⊢ ((F Fn A ∧ x ∈ A) →
((F ‘x) = z ↔
xFz)) |
| 14 | 12, 13 | syl5bb 248 |
. . . . . . . . . . . . . 14
⊢ ((F Fn A ∧ x ∈ A) →
(z = (F
‘x) ↔ xFz)) |
| 15 | | eqcom 2355 |
. . . . . . . . . . . . . . 15
⊢ (z = (F
‘y) ↔ (F ‘y) =
z) |
| 16 | | fnbrfvb 5359 |
. . . . . . . . . . . . . . 15
⊢ ((F Fn A ∧ y ∈ A) →
((F ‘y) = z ↔
yFz)) |
| 17 | 15, 16 | syl5bb 248 |
. . . . . . . . . . . . . 14
⊢ ((F Fn A ∧ y ∈ A) →
(z = (F
‘y) ↔ yFz)) |
| 18 | 14, 17 | bi2anan9 843 |
. . . . . . . . . . . . 13
⊢ (((F Fn A ∧ x ∈ A) ∧ (F Fn A ∧ y ∈ A)) → ((z =
(F ‘x) ∧ z = (F
‘y)) ↔ (xFz ∧ yFz))) |
| 19 | 18 | anandis 803 |
. . . . . . . . . . . 12
⊢ ((F Fn A ∧ (x ∈ A ∧ y ∈ A)) →
((z = (F ‘x)
∧ z =
(F ‘y)) ↔ (xFz ∧ yFz))) |
| 20 | 19 | pm5.32da 622 |
. . . . . . . . . . 11
⊢ (F Fn A →
(((x ∈
A ∧
y ∈
A) ∧
(z = (F
‘x) ∧ z = (F ‘y)))
↔ ((x ∈ A ∧ y ∈ A) ∧ (xFz ∧ yFz)))) |
| 21 | 11, 20 | bitr4d 247 |
. . . . . . . . . 10
⊢ (F Fn A →
((xFz ∧ yFz) ↔
((x ∈
A ∧
y ∈
A) ∧
(z = (F
‘x) ∧ z = (F ‘y))))) |
| 22 | 21 | imbi1d 308 |
. . . . . . . . 9
⊢ (F Fn A →
(((xFz ∧ yFz) →
x = y)
↔ (((x ∈ A ∧ y ∈ A) ∧ (z = (F ‘x)
∧ z =
(F ‘y))) → x =
y))) |
| 23 | | impexp 433 |
. . . . . . . . 9
⊢ ((((x ∈ A ∧ y ∈ A) ∧ (z = (F
‘x) ∧ z = (F ‘y)))
→ x = y) ↔ ((x
∈ A ∧ y ∈ A) →
((z = (F ‘x)
∧ z =
(F ‘y)) → x =
y))) |
| 24 | 22, 23 | syl6bb 252 |
. . . . . . . 8
⊢ (F Fn A →
(((xFz ∧ yFz) →
x = y)
↔ ((x ∈ A ∧ y ∈ A) →
((z = (F ‘x)
∧ z =
(F ‘y)) → x =
y)))) |
| 25 | 24 | albidv 1625 |
. . . . . . 7
⊢ (F Fn A →
(∀z((xFz ∧ yFz) →
x = y)
↔ ∀z((x ∈ A ∧ y ∈ A) →
((z = (F ‘x)
∧ z =
(F ‘y)) → x =
y)))) |
| 26 | | 19.21v 1890 |
. . . . . . . 8
⊢ (∀z((x ∈ A ∧ y ∈ A) → ((z =
(F ‘x) ∧ z = (F
‘y)) → x = y)) ↔
((x ∈
A ∧
y ∈
A) → ∀z((z = (F
‘x) ∧ z = (F ‘y))
→ x = y))) |
| 27 | | 19.23v 1891 |
. . . . . . . . . 10
⊢ (∀z((z = (F
‘x) ∧ z = (F ‘y))
→ x = y) ↔ (∃z(z = (F
‘x) ∧ z = (F ‘y))
→ x = y)) |
| 28 | | fvex 5340 |
. . . . . . . . . . . 12
⊢ (F ‘x)
∈ V |
| 29 | 28 | eqvinc 2967 |
. . . . . . . . . . 11
⊢ ((F ‘x) =
(F ‘y) ↔ ∃z(z = (F
‘x) ∧ z = (F ‘y))) |
| 30 | 29 | imbi1i 315 |
. . . . . . . . . 10
⊢ (((F ‘x) =
(F ‘y) → x =
y) ↔ (∃z(z = (F
‘x) ∧ z = (F ‘y))
→ x = y)) |
| 31 | 27, 30 | bitr4i 243 |
. . . . . . . . 9
⊢ (∀z((z = (F
‘x) ∧ z = (F ‘y))
→ x = y) ↔ ((F
‘x) = (F ‘y)
→ x = y)) |
| 32 | 31 | imbi2i 303 |
. . . . . . . 8
⊢ (((x ∈ A ∧ y ∈ A) → ∀z((z = (F
‘x) ∧ z = (F ‘y))
→ x = y)) ↔ ((x
∈ A ∧ y ∈ A) →
((F ‘x) = (F
‘y) → x = y))) |
| 33 | 26, 32 | bitri 240 |
. . . . . . 7
⊢ (∀z((x ∈ A ∧ y ∈ A) → ((z =
(F ‘x) ∧ z = (F
‘y)) → x = y)) ↔
((x ∈
A ∧
y ∈
A) → ((F ‘x) =
(F ‘y) → x =
y))) |
| 34 | 25, 33 | syl6bb 252 |
. . . . . 6
⊢ (F Fn A →
(∀z((xFz ∧ yFz) →
x = y)
↔ ((x ∈ A ∧ y ∈ A) →
((F ‘x) = (F
‘y) → x = y)))) |
| 35 | 34 | 2albidv 1627 |
. . . . 5
⊢ (F Fn A →
(∀x∀y∀z((xFz ∧ yFz) →
x = y)
↔ ∀x∀y((x ∈ A ∧ y ∈ A) →
((F ‘x) = (F
‘y) → x = y)))) |
| 36 | | breq1 4643 |
. . . . . . . 8
⊢ (x = y →
(xFz ↔
yFz)) |
| 37 | 36 | mo4 2237 |
. . . . . . 7
⊢ (∃*x xFz ↔ ∀x∀y((xFz ∧ yFz) → x =
y)) |
| 38 | 37 | albii 1566 |
. . . . . 6
⊢ (∀z∃*x xFz ↔ ∀z∀x∀y((xFz ∧ yFz) → x =
y)) |
| 39 | | alcom 1737 |
. . . . . 6
⊢ (∀z∀x∀y((xFz ∧ yFz) → x =
y) ↔ ∀x∀z∀y((xFz ∧ yFz) → x =
y)) |
| 40 | | alcom 1737 |
. . . . . . 7
⊢ (∀z∀y((xFz ∧ yFz) → x =
y) ↔ ∀y∀z((xFz ∧ yFz) → x =
y)) |
| 41 | 40 | albii 1566 |
. . . . . 6
⊢ (∀x∀z∀y((xFz ∧ yFz) → x =
y) ↔ ∀x∀y∀z((xFz ∧ yFz) → x =
y)) |
| 42 | 38, 39, 41 | 3bitri 262 |
. . . . 5
⊢ (∀z∃*x xFz ↔ ∀x∀y∀z((xFz ∧ yFz) → x =
y)) |
| 43 | | r2al 2652 |
. . . . 5
⊢ (∀x ∈ A ∀y ∈ A ((F ‘x) =
(F ‘y) → x =
y) ↔ ∀x∀y((x ∈ A ∧ y ∈ A) → ((F
‘x) = (F ‘y)
→ x = y))) |
| 44 | 35, 42, 43 | 3bitr4g 279 |
. . . 4
⊢ (F Fn A →
(∀z∃*x xFz ↔ ∀x ∈ A ∀y ∈ A ((F ‘x) =
(F ‘y) → x =
y))) |
| 45 | 2, 44 | syl 15 |
. . 3
⊢ (F:A–→B
→ (∀z∃*x xFz ↔ ∀x ∈ A ∀y ∈ A ((F ‘x) =
(F ‘y) → x =
y))) |
| 46 | 45 | pm5.32i 618 |
. 2
⊢ ((F:A–→B
∧ ∀z∃*x xFz) ↔ (F:A–→B
∧ ∀x ∈ A ∀y ∈ A ((F ‘x) =
(F ‘y) → x =
y))) |
| 47 | 1, 46 | bitri 240 |
1
⊢ (F:A–1-1→B
↔ (F:A–→B
∧ ∀x ∈ A ∀y ∈ A ((F ‘x) =
(F ‘y) → x =
y))) |