New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ancl | GIF version |
Description: Conjoin antecedent to left of consequent. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
ancl | ⊢ ((φ → ψ) → (φ → (φ ∧ ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 434 | . 2 ⊢ (φ → (ψ → (φ ∧ ψ))) | |
2 | 1 | a2i 12 | 1 ⊢ ((φ → ψ) → (φ → (φ ∧ ψ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: equs4 1959 eupickbi 2270 |
Copyright terms: Public domain | W3C validator |