New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > equs4 | GIF version |
Description: Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.) |
Ref | Expression |
---|---|
equs4 | ⊢ (∀x(x = y → φ) → ∃x(x = y ∧ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a9e 1951 | . . 3 ⊢ ∃x x = y | |
2 | 19.29 1596 | . . 3 ⊢ ((∀x(x = y → φ) ∧ ∃x x = y) → ∃x((x = y → φ) ∧ x = y)) | |
3 | 1, 2 | mpan2 652 | . 2 ⊢ (∀x(x = y → φ) → ∃x((x = y → φ) ∧ x = y)) |
4 | ancl 529 | . . . 4 ⊢ ((x = y → φ) → (x = y → (x = y ∧ φ))) | |
5 | 4 | imp 418 | . . 3 ⊢ (((x = y → φ) ∧ x = y) → (x = y ∧ φ)) |
6 | 5 | eximi 1576 | . 2 ⊢ (∃x((x = y → φ) ∧ x = y) → ∃x(x = y ∧ φ)) |
7 | 3, 6 | syl 15 | 1 ⊢ (∀x(x = y → φ) → ∃x(x = y ∧ φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: equs45f 1989 sb2 2023 |
Copyright terms: Public domain | W3C validator |