| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm3.2 | GIF version | ||
| Description: Join antecedents with conjunction. Theorem *3.2 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.2 | ⊢ (φ → (ψ → (φ ∧ ψ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ ((φ ∧ ψ) → (φ ∧ ψ)) | |
| 2 | 1 | ex 423 | 1 ⊢ (φ → (ψ → (φ ∧ ψ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: pm3.21 435 pm3.2i 441 pm3.43i 442 ibar 490 jca 518 jcad 519 ancl 529 pm3.2an3 1131 19.29 1596 r19.26 2747 r19.29 2755 difrab 3530 |
| Copyright terms: Public domain | W3C validator |