| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ax17e | GIF version | ||
| Description: A rephrasing of ax-17 1616 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| ax17e | ⊢ (∃xφ → φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1542 | . 2 ⊢ (∃xφ ↔ ¬ ∀x ¬ φ) | |
| 2 | ax-17 1616 | . . 3 ⊢ (¬ φ → ∀x ¬ φ) | |
| 3 | 2 | con1i 121 | . 2 ⊢ (¬ ∀x ¬ φ → φ) |
| 4 | 1, 3 | sylbi 187 | 1 ⊢ (∃xφ → φ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-17 1616 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 |
| This theorem is referenced by: exlimiv 1634 exlimdv 1636 19.9v 1664 equid 1676 |
| Copyright terms: Public domain | W3C validator |