NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ax17e GIF version

Theorem ax17e 1618
Description: A rephrasing of ax-17 1616 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017.)
Assertion
Ref Expression
ax17e (xφφ)
Distinct variable group:   φ,x

Proof of Theorem ax17e
StepHypRef Expression
1 df-ex 1542 . 2 (xφ ↔ ¬ x ¬ φ)
2 ax-17 1616 . . 3 φx ¬ φ)
32con1i 121 . 2 x ¬ φφ)
41, 3sylbi 187 1 (xφφ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-17 1616
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by:  exlimiv  1634  exlimdv  1636  19.9v  1664  equid  1676
  Copyright terms: Public domain W3C validator