New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exlimiv | GIF version |
Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants such as rexlimdv 2738, is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~hirstjl/primer/hirst.pdf 2738. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C. In essence, Rule C states that if we can prove that some element x exists satisfying a wff, i.e. ∃xφ(x) where φ(x) has x free, then we can use φ(C) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier. We cannot do this in Metamath directly. Instead, we use the original φ (containing x) as an antecedent for the main part of the proof. We eventually arrive at (φ → ψ) where ψ is the theorem to be proved and does not contain x. Then we apply exlimiv 1634 to arrive at (∃xφ → ψ). Finally, we separately prove ∃xφ and detach it with modus ponens ax-mp 5 to arrive at the final theorem ψ. (Contributed by NM, 5-Aug-1993.) (Revised by Wolf Lammen to remove dependency on ax-9 and ax-8, 4-Dec-2017.) |
Ref | Expression |
---|---|
exlimiv.1 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
exlimiv | ⊢ (∃xφ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimiv.1 | . . 3 ⊢ (φ → ψ) | |
2 | 1 | eximi 1576 | . 2 ⊢ (∃xφ → ∃xψ) |
3 | ax17e 1618 | . 2 ⊢ (∃xψ → ψ) | |
4 | 2, 3 | syl 15 | 1 ⊢ (∃xφ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: exlimivv 1635 sp 1747 ax12olem1 1927 equvin 2001 ax11vALT 2097 mo 2226 mopick 2266 gencl 2888 cgsexg 2891 gencbvex2 2903 vtocleg 2926 eqvinc 2967 sbcex2 3096 eluni 3895 intab 3957 uniintsn 3964 unipw 4118 el1c 4140 pw10b 4167 ins2kss 4280 ins3kss 4281 cokrelk 4285 cnvkexg 4287 p6exg 4291 ssetkex 4295 sikexg 4297 ins2kexg 4306 ins3kexg 4307 eqpw1uni 4331 pw1eqadj 4333 sspw1 4336 sspw12 4337 iotauni 4352 iota1 4354 iota4 4358 0nelsuc 4401 nnsucelr 4429 sfintfin 4533 sfin111 4537 vfinspnn 4542 mosubopt 4613 phialllem2 4618 opelopabsb 4698 br1st 4859 br2nd 4860 brco 4884 dmcoss 4972 imasn 5019 ffoss 5315 fvprc 5326 fnoprabg 5586 op1st2nd 5791 addcfnex 5825 mapprc 6005 mapsspm 6022 mapsspw 6023 map0b 6025 map0 6026 bren 6031 ensymi 6037 en0 6043 enpw1 6063 enmap2 6069 enmap1 6075 elncs 6120 ncseqnc 6129 mucass 6136 1cnc 6140 muc0 6143 mucid1 6144 ce0 6191 nc0le1 6217 ce2lt 6221 lenc 6224 taddc 6230 letc 6232 ce0t 6233 cet 6235 tce2 6237 ce0lenc1 6240 tlenc1c 6241 addcdi 6251 spacssnc 6285 |
Copyright terms: Public domain | W3C validator |