New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfv | GIF version |
Description: If x is not present in φ, then x is not free in φ. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfv | ⊢ Ⅎxφ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1616 | . 2 ⊢ (φ → ∀xφ) | |
2 | 1 | nfi 1551 | 1 ⊢ Ⅎxφ |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-17 1616 |
This theorem depends on definitions: df-bi 177 df-nf 1545 |
This theorem is referenced by: nfvd 1620 19.21v 1890 19.23v 1891 pm11.53 1893 19.27v 1894 19.28v 1895 19.36v 1896 19.36aiv 1897 19.12vv 1898 19.37v 1899 19.41v 1901 19.42v 1905 eeanv 1913 nexdv 1916 spimv 1990 spimev 1999 cbvalv 2002 cbvexv 2003 cbval2 2004 cbvex2 2005 cbval2v 2006 cbvex2v 2007 cbvaldva 2010 cbvexdva 2011 cleljustALT 2015 dvelimnf 2017 sbiedv 2037 ax16i 2046 ax16ALT2 2048 equsb3lem 2101 equsb3 2102 elsb1 2103 elsb2 2104 sbhb 2107 sbnf2 2108 dfsb7 2119 sbid2v 2123 exsb 2130 exsbOLD 2131 euf 2210 eubidv 2212 nfeud2 2216 sb8eu 2222 mo 2226 euex 2227 euorv 2232 sbmo 2234 mo4f 2236 mo4 2237 mobidv 2239 eu5 2242 moim 2250 morimv 2252 moanim 2260 moanimv 2262 euanv 2265 mopick 2266 moexexv 2274 2mo 2282 2mos 2283 2eu4 2287 2eu6 2289 bm1.1 2338 eqsb1lem 2453 eqsb1 2454 clelsb1 2455 clelsb2 2456 abbi 2464 abbidv 2468 cbvabv 2473 clelab 2474 nfcjust 2478 nfcv 2490 nfeqd 2504 nfeld 2505 nfabd2 2508 dvelimdc 2510 cleqf 2514 sbabel 2516 ralbidva 2631 rexbidva 2632 ralbidv 2635 rexbidv 2636 2ralbida 2654 2ralbidva 2655 ralimdva 2693 ralrimiv 2697 r19.21v 2702 ralrimdv 2704 reximdvai 2725 r19.23v 2731 rexlimiv 2733 rexlimdv 2738 r19.37av 2762 r19.41v 2765 reean 2778 reeanv 2779 reubidva 2795 rmobidva 2800 cbvralf 2830 cbvreu 2834 cbvralv 2836 cbvrexv 2837 cbvreuv 2838 cbvrmov 2839 cbvralsv 2847 cbvrexsv 2848 sbralie 2849 cbvrab 2858 cbvrabv 2859 issetf 2865 ceqsalv 2886 ceqsralv 2887 ceqsexv 2895 ceqsex2 2896 ceqsex2v 2897 vtocld 2908 vtocl 2910 vtoclg 2915 vtocl2g 2919 vtoclga 2921 vtocl2gaf 2922 vtocl2ga 2923 vtocl3gaf 2924 vtocl3ga 2925 spcimdv 2937 spcgv 2940 spcegv 2941 rspct 2949 rspc 2950 rspce 2951 rspcv 2952 rspcev 2956 rspc2v 2962 eqvincf 2968 ceqsexgv 2972 elabgt 2983 elab 2986 elabg 2987 elab3g 2992 elrab 2995 ralab2 3002 rexab2 3004 eqeu 3008 mo2icl 3016 mob2 3017 mob 3019 reu2 3025 reu3 3027 sbcco 3069 sbcco2 3070 cbvsbcv 3076 sbcieg 3079 sbcie2g 3080 sbcied 3083 elrabsf 3085 sbcbidv 3101 sbcel2gv 3107 sbcg 3112 sbc2iegf 3113 sbc2ie 3114 rmo2 3132 rmo3 3134 csbeq2dv 3162 nfcsb1d 3167 nfcsbd 3170 csbiebt 3173 csbied 3179 csbie2t 3181 sbcnestg 3186 sbnfc2 3197 cbvralcsf 3199 cbvreucsf 3201 cbvrabcsf 3202 cbvralv2 3203 cbvrexv2 3204 dfss2f 3265 uniiunlem 3354 sbss 3660 nfifd 3686 euabsn 3793 nfuni 3898 nfunid 3899 eluniab 3904 nfint 3937 elintab 3938 iineq2dv 3992 nfiotad 4343 cbviota 4345 cbviotav 4346 sb8iota 4347 iota2d 4367 iota2 4368 ncfinraise 4482 ncfinlower 4484 nfop 4605 copsex2t 4609 copsex2g 4610 opabbidv 4626 nfopab 4628 cbvopab 4631 cbvopabv 4632 cbvopab1 4633 cbvopab2 4634 cbvopab1s 4635 cbvopab1v 4636 opelopabaf 4711 opeliunxp 4821 opeliunxp2 4823 ralxpf 4828 dfdmf 4906 dfrnf 4963 dffun3 5121 dffun6f 5124 fun11 5160 imadif 5172 fun11iun 5306 fv3 5342 tz6.12-1 5345 tz6.12c 5348 funfv2f 5378 eqfnfv2f 5397 ffnfv 5428 ffnfvf 5429 dff13f 5473 nfoprab 5550 oprabbidv 5565 cbvoprab1 5568 cbvoprab2 5569 cbvoprab12 5570 cbvoprab12v 5571 cbvoprab3 5572 cbvoprab3v 5573 ov3 5600 mpteq12f 5656 mpt2eq123 5662 mpteq2dva 5668 cbvmpt 5677 cbvmpt2x 5679 fmpt2x 5731 fvfullfunlem1 5862 |
Copyright terms: Public domain | W3C validator |