New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3syl | GIF version |
Description: Inference chaining two syllogisms. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3syl.1 | ⊢ (φ → ψ) |
3syl.2 | ⊢ (ψ → χ) |
3syl.3 | ⊢ (χ → θ) |
Ref | Expression |
---|---|
3syl | ⊢ (φ → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3syl.1 | . . 3 ⊢ (φ → ψ) | |
2 | 3syl.2 | . . 3 ⊢ (ψ → χ) | |
3 | 1, 2 | syl 15 | . 2 ⊢ (φ → χ) |
4 | 3syl.3 | . 2 ⊢ (χ → θ) | |
5 | 3, 4 | syl 15 | 1 ⊢ (φ → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: nic-ax 1438 merco2 1501 alcomiw 1704 hbn1fw 1705 hba1w 1707 ax5o 1749 hba1OLD 1787 ax16i 2046 hba1-o 2149 ax67to6 2167 ax467 2169 ax467to6 2171 aev-o 2182 ax10-16 2190 mo 2226 eupickb 2269 2eu2 2285 2reu5 3045 sbcco3g 3192 imakexg 4300 intexg 4320 addcexg 4394 nnsucelr 4429 ncfineleq 4478 oddnn 4508 evenodddisj 4517 sfintfin 4533 imaexg 4747 coexg 4750 siexg 4753 fnresdm 5193 foima 5275 f1imacnv 5303 f1osng 5324 oprabid 5551 imageexg 5801 fullfunexg 5860 erth 5969 qsexg 5983 pmex 6006 map0 6026 enpw1 6063 enprmaplem3 6079 enprmaplem6 6082 ncdisjun 6137 ovcelem1 6172 lenc 6224 nchoicelem8 6297 nchoicelem14 6303 nchoicelem17 6306 dmfrec 6317 fnfreclem1 6318 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |