| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > hba1-o | GIF version | ||
| Description: x is not free in ∀xφ. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| hba1-o | ⊢ (∀xφ → ∀x∀xφ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-4 2135 | . . 3 ⊢ (∀x ¬ ∀xφ → ¬ ∀xφ) | |
| 2 | 1 | con2i 112 | . 2 ⊢ (∀xφ → ¬ ∀x ¬ ∀xφ) | 
| 3 | ax6 2147 | . 2 ⊢ (¬ ∀x ¬ ∀xφ → ∀x ¬ ∀x ¬ ∀xφ) | |
| 4 | ax6 2147 | . . . 4 ⊢ (¬ ∀xφ → ∀x ¬ ∀xφ) | |
| 5 | 4 | con1i 121 | . . 3 ⊢ (¬ ∀x ¬ ∀xφ → ∀xφ) | 
| 6 | 5 | alimi 1559 | . 2 ⊢ (∀x ¬ ∀x ¬ ∀xφ → ∀x∀xφ) | 
| 7 | 2, 3, 6 | 3syl 18 | 1 ⊢ (∀xφ → ∀x∀xφ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-4 2135 ax-5o 2136 ax-6o 2137 | 
| This theorem is referenced by: a5i-o 2150 nfa1-o 2166 ax67to6 2167 ax467to6 2171 dvelimf-o 2180 ax11indalem 2197 ax11inda2ALT 2198 ax11inda 2200 | 
| Copyright terms: Public domain | W3C validator |