| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3bitr3ri | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 | ⊢ (φ ↔ ψ) |
| 3bitr3i.2 | ⊢ (φ ↔ χ) |
| 3bitr3i.3 | ⊢ (ψ ↔ θ) |
| Ref | Expression |
|---|---|
| 3bitr3ri | ⊢ (θ ↔ χ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.3 | . 2 ⊢ (ψ ↔ θ) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (φ ↔ ψ) | |
| 3 | 3bitr3i.2 | . . 3 ⊢ (φ ↔ χ) | |
| 4 | 2, 3 | bitr3i 242 | . 2 ⊢ (ψ ↔ χ) |
| 5 | 1, 4 | bitr3i 242 | 1 ⊢ (θ ↔ χ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 |
| This theorem is referenced by: bigolden 901 2eu8 2291 2ralor 2781 sbcco 3069 dfiin2g 4001 nnadjoinpw 4522 el1st 4730 dffun6f 5124 fununi 5161 |
| Copyright terms: Public domain | W3C validator |