New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3bitr3ri | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (φ ↔ ψ) |
3bitr3i.2 | ⊢ (φ ↔ χ) |
3bitr3i.3 | ⊢ (ψ ↔ θ) |
Ref | Expression |
---|---|
3bitr3ri | ⊢ (θ ↔ χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.3 | . 2 ⊢ (ψ ↔ θ) | |
2 | 3bitr3i.1 | . . 3 ⊢ (φ ↔ ψ) | |
3 | 3bitr3i.2 | . . 3 ⊢ (φ ↔ χ) | |
4 | 2, 3 | bitr3i 242 | . 2 ⊢ (ψ ↔ χ) |
5 | 1, 4 | bitr3i 242 | 1 ⊢ (θ ↔ χ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: bigolden 901 2eu8 2291 2ralor 2781 sbcco 3069 dfiin2g 4001 nnadjoinpw 4522 el1st 4730 dffun6f 5124 fununi 5161 |
Copyright terms: Public domain | W3C validator |