| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm4.71 | GIF version | ||
| Description: Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) | 
| Ref | Expression | 
|---|---|
| pm4.71 | ⊢ ((φ → ψ) ↔ (φ ↔ (φ ∧ ψ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 443 | . . 3 ⊢ ((φ ∧ ψ) → φ) | |
| 2 | 1 | biantru 491 | . 2 ⊢ ((φ → (φ ∧ ψ)) ↔ ((φ → (φ ∧ ψ)) ∧ ((φ ∧ ψ) → φ))) | 
| 3 | anclb 530 | . 2 ⊢ ((φ → ψ) ↔ (φ → (φ ∧ ψ))) | |
| 4 | dfbi2 609 | . 2 ⊢ ((φ ↔ (φ ∧ ψ)) ↔ ((φ → (φ ∧ ψ)) ∧ ((φ ∧ ψ) → φ))) | |
| 5 | 2, 3, 4 | 3bitr4i 268 | 1 ⊢ ((φ → ψ) ↔ (φ ↔ (φ ∧ ψ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-an 360 | 
| This theorem is referenced by: pm4.71r 612 pm4.71i 613 pm4.71d 615 bigolden 901 pm5.75 903 exintrbi 1613 rabid2 2789 dfss2 3263 disj3 3596 dmopab3 4918 resopab2 5002 resoprab2 5583 | 
| Copyright terms: Public domain | W3C validator |