New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3impa | GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impa.1 | ⊢ (((φ ∧ ψ) ∧ χ) → θ) |
Ref | Expression |
---|---|
3impa | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impa.1 | . . 3 ⊢ (((φ ∧ ψ) ∧ χ) → θ) | |
2 | 1 | exp31 587 | . 2 ⊢ (φ → (ψ → (χ → θ))) |
3 | 2 | 3imp 1145 | 1 ⊢ ((φ ∧ ψ ∧ χ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: 3impdir 1238 syl3an9b 1250 biimp3a 1281 rspec3 2715 rspc3v 2965 raltpg 3778 rextpg 3779 eladdci 4400 lefinlteq 4464 opelopabt 4700 3optocl 4841 fun2ssres 5146 funssfv 5344 foco2 5427 f1elima 5475 eloprabga 5579 mucass 6136 cenc 6182 |
Copyright terms: Public domain | W3C validator |