New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbv2 | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) |
Ref | Expression |
---|---|
cbv2.1 | ⊢ (φ → Ⅎyψ) |
cbv2.2 | ⊢ (φ → Ⅎxχ) |
cbv2.3 | ⊢ (φ → (x = y → (ψ ↔ χ))) |
Ref | Expression |
---|---|
cbv2 | ⊢ (∀x∀yφ → (∀xψ ↔ ∀yχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv2.1 | . . 3 ⊢ (φ → Ⅎyψ) | |
2 | 1 | nfrd 1763 | . 2 ⊢ (φ → (ψ → ∀yψ)) |
3 | cbv2.2 | . . 3 ⊢ (φ → Ⅎxχ) | |
4 | 3 | nfrd 1763 | . 2 ⊢ (φ → (χ → ∀xχ)) |
5 | cbv2.3 | . 2 ⊢ (φ → (x = y → (ψ ↔ χ))) | |
6 | 2, 4, 5 | cbv2h 1980 | 1 ⊢ (∀x∀yφ → (∀xψ ↔ ∀yχ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: cbvald 2008 |
Copyright terms: Public domain | W3C validator |