| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > cbvald | GIF version | ||
| Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2016. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| cbvald.1 | ⊢ Ⅎyφ |
| cbvald.2 | ⊢ (φ → Ⅎyψ) |
| cbvald.3 | ⊢ (φ → (x = y → (ψ ↔ χ))) |
| Ref | Expression |
|---|---|
| cbvald | ⊢ (φ → (∀xψ ↔ ∀yχ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvald.1 | . . . 4 ⊢ Ⅎyφ | |
| 2 | 1 | nfri 1762 | . . 3 ⊢ (φ → ∀yφ) |
| 3 | 2 | alrimiv 1631 | . 2 ⊢ (φ → ∀x∀yφ) |
| 4 | cbvald.2 | . . 3 ⊢ (φ → Ⅎyψ) | |
| 5 | nfvd 1620 | . . 3 ⊢ (φ → Ⅎxχ) | |
| 6 | cbvald.3 | . . 3 ⊢ (φ → (x = y → (ψ ↔ χ))) | |
| 7 | 4, 5, 6 | cbv2 1981 | . 2 ⊢ (∀x∀yφ → (∀xψ ↔ ∀yχ)) |
| 8 | 3, 7 | syl 15 | 1 ⊢ (φ → (∀xψ ↔ ∀yχ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: cbvexd 2009 cbvaldva 2010 |
| Copyright terms: Public domain | W3C validator |