| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > cbv3 | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution, that does not use ax-12o 2142. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| cbv3.1 | ⊢ Ⅎyφ |
| cbv3.2 | ⊢ Ⅎxψ |
| cbv3.3 | ⊢ (x = y → (φ → ψ)) |
| Ref | Expression |
|---|---|
| cbv3 | ⊢ (∀xφ → ∀yψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbv3.1 | . . . 4 ⊢ Ⅎyφ | |
| 2 | 1 | a1i 10 | . . 3 ⊢ ( ⊤ → Ⅎyφ) |
| 3 | cbv3.2 | . . . 4 ⊢ Ⅎxψ | |
| 4 | 3 | a1i 10 | . . 3 ⊢ ( ⊤ → Ⅎxψ) |
| 5 | cbv3.3 | . . . 4 ⊢ (x = y → (φ → ψ)) | |
| 6 | 5 | a1i 10 | . . 3 ⊢ ( ⊤ → (x = y → (φ → ψ))) |
| 7 | 2, 4, 6 | cbv1 1979 | . 2 ⊢ (∀x∀y ⊤ → (∀xφ → ∀yψ)) |
| 8 | tru 1321 | . . 3 ⊢ ⊤ | |
| 9 | 8 | ax-gen 1546 | . 2 ⊢ ∀y ⊤ |
| 10 | 7, 9 | mpg 1548 | 1 ⊢ (∀xφ → ∀yψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊤ wtru 1316 ∀wal 1540 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: cbval 1984 ax16i 2046 ax16ALT2 2048 sb8 2092 mo 2226 |
| Copyright terms: Public domain | W3C validator |