New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbv2h | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
cbv2h.1 | ⊢ (φ → (ψ → ∀yψ)) |
cbv2h.2 | ⊢ (φ → (χ → ∀xχ)) |
cbv2h.3 | ⊢ (φ → (x = y → (ψ ↔ χ))) |
Ref | Expression |
---|---|
cbv2h | ⊢ (∀x∀yφ → (∀xψ ↔ ∀yχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv2h.1 | . . 3 ⊢ (φ → (ψ → ∀yψ)) | |
2 | cbv2h.2 | . . 3 ⊢ (φ → (χ → ∀xχ)) | |
3 | cbv2h.3 | . . . 4 ⊢ (φ → (x = y → (ψ ↔ χ))) | |
4 | bi1 178 | . . . 4 ⊢ ((ψ ↔ χ) → (ψ → χ)) | |
5 | 3, 4 | syl6 29 | . . 3 ⊢ (φ → (x = y → (ψ → χ))) |
6 | 1, 2, 5 | cbv1h 1978 | . 2 ⊢ (∀x∀yφ → (∀xψ → ∀yχ)) |
7 | equcomi 1679 | . . . . 5 ⊢ (y = x → x = y) | |
8 | bi2 189 | . . . . 5 ⊢ ((ψ ↔ χ) → (χ → ψ)) | |
9 | 7, 3, 8 | syl56 30 | . . . 4 ⊢ (φ → (y = x → (χ → ψ))) |
10 | 2, 1, 9 | cbv1h 1978 | . . 3 ⊢ (∀y∀xφ → (∀yχ → ∀xψ)) |
11 | 10 | a7s 1735 | . 2 ⊢ (∀x∀yφ → (∀yχ → ∀xψ)) |
12 | 6, 11 | impbid 183 | 1 ⊢ (∀x∀yφ → (∀xψ ↔ ∀yχ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: cbv2 1981 eujustALT 2207 |
Copyright terms: Public domain | W3C validator |