New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvalw | GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) |
Ref | Expression |
---|---|
cbvalw.1 | ⊢ (∀xφ → ∀y∀xφ) |
cbvalw.2 | ⊢ (¬ ψ → ∀x ¬ ψ) |
cbvalw.3 | ⊢ (∀yψ → ∀x∀yψ) |
cbvalw.4 | ⊢ (¬ φ → ∀y ¬ φ) |
cbvalw.5 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbvalw | ⊢ (∀xφ ↔ ∀yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalw.1 | . . 3 ⊢ (∀xφ → ∀y∀xφ) | |
2 | cbvalw.2 | . . 3 ⊢ (¬ ψ → ∀x ¬ ψ) | |
3 | cbvalw.5 | . . . 4 ⊢ (x = y → (φ ↔ ψ)) | |
4 | 3 | biimpd 198 | . . 3 ⊢ (x = y → (φ → ψ)) |
5 | 1, 2, 4 | cbvaliw 1673 | . 2 ⊢ (∀xφ → ∀yψ) |
6 | cbvalw.3 | . . 3 ⊢ (∀yψ → ∀x∀yψ) | |
7 | cbvalw.4 | . . 3 ⊢ (¬ φ → ∀y ¬ φ) | |
8 | 3 | biimprd 214 | . . . 4 ⊢ (x = y → (ψ → φ)) |
9 | 8 | equcoms 1681 | . . 3 ⊢ (y = x → (ψ → φ)) |
10 | 6, 7, 9 | cbvaliw 1673 | . 2 ⊢ (∀yψ → ∀xφ) |
11 | 5, 10 | impbii 180 | 1 ⊢ (∀xφ ↔ ∀yψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: hbn1fw 1705 |
Copyright terms: Public domain | W3C validator |