| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > cbvalivw | GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by NM, 9-Apr-2017.) |
| Ref | Expression |
|---|---|
| cbvalivw.1 | ⊢ (x = y → (φ → ψ)) |
| Ref | Expression |
|---|---|
| cbvalivw | ⊢ (∀xφ → ∀yψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalivw.1 | . . 3 ⊢ (x = y → (φ → ψ)) | |
| 2 | 1 | spimvw 1669 | . 2 ⊢ (∀xφ → ψ) |
| 3 | 2 | alrimiv 1631 | 1 ⊢ (∀xφ → ∀yψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
| This theorem is referenced by: cbvalvw 1702 alcomiw 1704 ax10lem1 1936 |
| Copyright terms: Public domain | W3C validator |