New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > clabel | GIF version |
Description: Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.) |
Ref | Expression |
---|---|
clabel | ⊢ ({x ∣ φ} ∈ A ↔ ∃y(y ∈ A ∧ ∀x(x ∈ y ↔ φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clel 2349 | . 2 ⊢ ({x ∣ φ} ∈ A ↔ ∃y(y = {x ∣ φ} ∧ y ∈ A)) | |
2 | abeq2 2459 | . . . 4 ⊢ (y = {x ∣ φ} ↔ ∀x(x ∈ y ↔ φ)) | |
3 | 2 | anbi2ci 677 | . . 3 ⊢ ((y = {x ∣ φ} ∧ y ∈ A) ↔ (y ∈ A ∧ ∀x(x ∈ y ↔ φ))) |
4 | 3 | exbii 1582 | . 2 ⊢ (∃y(y = {x ∣ φ} ∧ y ∈ A) ↔ ∃y(y ∈ A ∧ ∀x(x ∈ y ↔ φ))) |
5 | 1, 4 | bitri 240 | 1 ⊢ ({x ∣ φ} ∈ A ↔ ∃y(y ∈ A ∧ ∀x(x ∈ y ↔ φ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |