| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > clelab | GIF version | ||
| Description: Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| clelab | ⊢ (A ∈ {x ∣ φ} ↔ ∃x(x = A ∧ φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2340 | . . . 4 ⊢ (y ∈ {x ∣ φ} ↔ [y / x]φ) | |
| 2 | 1 | anbi2i 675 | . . 3 ⊢ ((y = A ∧ y ∈ {x ∣ φ}) ↔ (y = A ∧ [y / x]φ)) |
| 3 | 2 | exbii 1582 | . 2 ⊢ (∃y(y = A ∧ y ∈ {x ∣ φ}) ↔ ∃y(y = A ∧ [y / x]φ)) |
| 4 | df-clel 2349 | . 2 ⊢ (A ∈ {x ∣ φ} ↔ ∃y(y = A ∧ y ∈ {x ∣ φ})) | |
| 5 | nfv 1619 | . . 3 ⊢ Ⅎy(x = A ∧ φ) | |
| 6 | nfv 1619 | . . . 4 ⊢ Ⅎx y = A | |
| 7 | nfs1v 2106 | . . . 4 ⊢ Ⅎx[y / x]φ | |
| 8 | 6, 7 | nfan 1824 | . . 3 ⊢ Ⅎx(y = A ∧ [y / x]φ) |
| 9 | eqeq1 2359 | . . . 4 ⊢ (x = y → (x = A ↔ y = A)) | |
| 10 | sbequ12 1919 | . . . 4 ⊢ (x = y → (φ ↔ [y / x]φ)) | |
| 11 | 9, 10 | anbi12d 691 | . . 3 ⊢ (x = y → ((x = A ∧ φ) ↔ (y = A ∧ [y / x]φ))) |
| 12 | 5, 8, 11 | cbvex 1985 | . 2 ⊢ (∃x(x = A ∧ φ) ↔ ∃y(y = A ∧ [y / x]φ)) |
| 13 | 3, 4, 12 | 3bitr4i 268 | 1 ⊢ (A ∈ {x ∣ φ} ↔ ∃x(x = A ∧ φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 [wsb 1648 ∈ wcel 1710 {cab 2339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |